Analysis of the influence of film-forming compounds on droplet growth: Implications for cloud microphysical processes and climate

Decades of cloud microphysical research have not provided conclusive understanding of the physical processes responsible for droplet spectral broadening. Numerous mechanisms have been proposed?for example, entrainment mixing, vortex shedding, giant cloud condensation nuclei (CCN), chemical processing of CCN, and radiative cooling?all of which are likely candidates under select conditions. In this paper it is suggested that variability in the composition of CCN, and in particular, the existence of condensation inhibiting compounds, is another possible candidate. The inferred potential abundance of these amphiphilic film-forming compounds (FFCs) suggests that their effect may be important. Using a cloud parcel model with a simplified treatment of the effect of FFCs, it is shown that modest concentrations of FFCs (on the order of 5% of the total aerosol mass) can have a marked effect on drop growth and can cause significant increases in spectral dispersions. Moreover, it is shown that FFCs may, in some cases, reduce the number concentration of cloud droplets, with implications for cloud-climate feedbacks. This trend is at least in qualitative agreement with results from a recent field campaign.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2002 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC ?108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Feingold, Graham
Chuang, Patrick
Publisher UCAR/NCAR - Library
Publication Date 2002-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:08:13.323389
Metadata Record Identifier edu.ucar.opensky::articles:10246
Metadata Language eng; USA
Suggested Citation Feingold, Graham, Chuang, Patrick. (2002). Analysis of the influence of film-forming compounds on droplet growth: Implications for cloud microphysical processes and climate. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7wd4142. Accessed 12 May 2025.

Harvest Source