Analysis of tropical cyclone precipitation using an object-based algorithm

A recently developed object identification algorithm is applied to multisensor precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM 3B42) to detect and quantify the contribution of tropical cyclone precipitation (TCP) to total precipitation between 1998 and 2008. The study period includes 1144 storms. Estimates of TCP derived here are similar in pattern and seasonal variation to earlier estimates but are somewhat higher in magnitude. Annual-mean TCP fractions of over 20% are diagnosed over large swaths of tropical ocean, with seasonal means in some regions of more than 50%. Interannual variability of TCP is examined, and a small but significant downward trend in global TCP from 1998 to 2008 is found, consistent with results from independent studies examining accumulated cyclone energy (ACE). Relationships between annual-mean ACE and TCP in each major tropical cyclone basin are examined. High correlations are found in almost every basin, although different linear relationships exist in each. The highest ACE/TCP ratios are obtained in the North Atlantic and northeast Pacific basins, with lower ratios present in the northwest Pacific and South Pacific basins.

To Access Resource:

Questions? Email Resource Support Contact:

    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email
Metadata Contact Organization UCAR/NCAR - Library

Author Skok, Gregor
Bacmeister, Julio
Tribbia, Joseph
Publisher UCAR/NCAR - Library
Publication Date 2013-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:54:15.045844
Metadata Record Identifier edu.ucar.opensky::articles:12722
Metadata Language eng; USA
Suggested Citation Skok, Gregor, Bacmeister, Julio, Tribbia, Joseph. (2013). Analysis of tropical cyclone precipitation using an object-based algorithm. UCAR/NCAR - Library. Accessed 23 June 2024.

Harvest Source