Application of data assimilation in the Whole Atmosphere Community Climate Model to the study of day-to-day variability in the middle and upper atmosphere

The Data Assimilation Research Testbed (DART) ensemble adjustment Kalman filter (EAKF) is employed to perform data assimilation in the Whole Atmosphere Community Climate Model (WACCM). To demonstrate the potential of the WACCM+DART for studying short-term variability in the mesosphere and lower thermosphere (MLT), results are presented based on the assimilation of synthetic observations that are sampled from a known model truth. We assimilate temperature and wind from radiosondes and aircraft, satellite drift winds, and COSMIC refractivity in the lower atmosphere, and SABER temperature observations in the middle/upper atmosphere. Relative to an unconstrained WACCM simulation, the assimilation of only lower atmosphere observations reduces the global root mean square error (RMSE) in zonal wind by up to 40% at MLT altitudes. Using data assimilation to constrain the lower atmosphere can therefore provide significant insight into MLT variability. The RMSE in the MLT is reduced by an additional 10-15% when SABER observations are also assimilated. The WACCM+DART is shown to be able to reproduce the large-scale features of the day-to-day variability in the zonal mean, migrating, and nonmigrating tides in the MLT. Though our simulation results are based on idealized conditions, they demonstrate that the WACCM+DART can reproduce the day-to-day variability in the MLT. Assimilation of real observations in the WACCM+DART will therefore enable significant insight into the real day-to-day dynamical variability from the surface to the lower thermosphere.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2013 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Pedatella, Nicholas M.
Raeder, Kevin D.
Anderson, Jeffrey L.
Liu, Hanli
Publisher UCAR/NCAR - Library
Publication Date 2013-08-28T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-12T01:16:48.526347
Metadata Record Identifier edu.ucar.opensky::articles:12971
Metadata Language eng; USA
Suggested Citation Pedatella, Nicholas M., Raeder, Kevin D., Anderson, Jeffrey L., Liu, Hanli. (2013). Application of data assimilation in the Whole Atmosphere Community Climate Model to the study of day-to-day variability in the middle and upper atmosphere. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7rv0pkg. Accessed 09 August 2025.

Harvest Source