Application of postprocessing to watershed-scale subseasonal climate forecasts over the contiguous United States

Subseasonal to seasonal (S2S) climate forecasting has become a central component of climate services aimed at improving water management. In some cases, operational S2S climate predictions are translated into inputs for follow-on analyses or models, whereas the S2S predictions on their own may provide for qualitative situational awareness. At the spatial scales of water management, however, S2S climate forecasts often suffer from systematic biases, and low skill and reliability. This study assesses the potential to improve S2S forecast skill and salience for watershed applications through the use of postprocessing to harness skills in large-scale fields from the global climate model forecast outputs. To this end, the components-based technique-partial least squares regression (PLSR)-is used to improve the skill of biweekly temperature and precipitation forecasts from the Climate Forecast System version 2 (CFSv2). The PLSR method forms predictor components based on a cross-validated analysis of hindcasts from CFSv2 climate and land surface fields, and the results are benchmarked against raw CFSv2 forecasts, remapped to intermediate-scale watershed areas. We find that postprocessing affords marginal to moderate gains in skill in many watersheds, raising climate forecast skill above a usability threshold over the four seasons analyzed. In other locations, however, postprocessing fails to improve skill, particularly for extreme events, and can lead to unreliably narrow forecast ranges. This work presents evidence that the statistical postprocessing of climate forecast system outputs has potential to improve forecast skill, but that more thorough study of alternative approaches and predictors may be needed to achieve comprehensively positive outcomes.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Service #1 : Cheyenne: SGI ICE XA Cluster

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2020 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Baker, Sarah A.
Wood, Andrew W.
Rajagopalan, Balaji
Publisher UCAR/NCAR - Library
Publication Date 2020-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:35:32.117864
Metadata Record Identifier edu.ucar.opensky::articles:23385
Metadata Language eng; USA
Suggested Citation Baker, Sarah A., Wood, Andrew W., Rajagopalan, Balaji. (2020). Application of postprocessing to watershed-scale subseasonal climate forecasts over the contiguous United States. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7p55rqg. Accessed 29 April 2025.

Harvest Source