Application of the cell perturbation method to large-eddy simulations of a real urban area

With the continuous increase in computing capabilities, large-eddy simulation (LES) has recently gained popularity in applications related to flow, turbulence, and dispersion in the urban atmospheric boundary layer (ABL). Herein, we perform high-resolution building-scale LES over the Seoul, South Korea, city area to investigate the impact of inflow turbulence on the resulting turbulent flow field in the urban ABL. To that end, LES using the cell perturbation method for inflow turbulence generation is compared to a case where no turbulence fluctuations in the incoming ABL are present (unperturbed case). Validation of the model results using wind speed and wind direction observations at 3 m above ground level reveals minimal differences irrespective of the presence of incoming ABL turbulence. This is due to the high density of building structures present at the surface level that create shear instabilities in the flow field and therefore induce local turbulence production. In the unperturbed case, turbulent fluctuations are found to slowly propagate in the vertical direction with increasing fetch from the inflow boundaries, creating an internal boundary layer that separates the turbulent region near the building structures and the nonturbulent flow aloft that occupies the rest of the ABL. Analysis of turbulence quantities including energy spectra, velocity correlations, and passive scalar fluxes reveals significant underpredictions that rapidly grow with increasing height within the ABL. These results demonstrate the need for realistic inflow turbulence in building-resolving LES modeling to ensure proper interactions within the ABL.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Service #1 : Cheyenne: SGI ICE XA Cluster

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 American Meteorological Society.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Lee, Gwang-Jin
Muñoz-Esparza, Domingo
Yi, Chaeyeon
Choe, Hi Jun
Publisher UCAR/NCAR - Library
Publication Date 2019-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:21:15.080555
Metadata Record Identifier edu.ucar.opensky::articles:22528
Metadata Language eng; USA
Suggested Citation Lee, Gwang-Jin, Muñoz-Esparza, Domingo, Yi, Chaeyeon, Choe, Hi Jun. (2019). Application of the cell perturbation method to large-eddy simulations of a real urban area. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7kp857j. Accessed 16 March 2025.

Harvest Source