Argo observations of the deep mixing band in the Southern Ocean: A salinity modeling challenge

The Southern Ocean plays an important role in mediating oceanic uptake of CO2 and heat due to a strong meridional overturning circulation. Gridded Argo float data for 2004-2017 were used to evaluate subsurface processes at the mixed layer depth (MLD) that occur in a narrow deep mixing band. Shifts in the value of the Turner Angle at the MLD indicate that early in the season the MLD deepens slowly as it encounters and is stabilized by a subsurface salt maximum. By September mixing has penetrated this salinity feature and the rate of deepening is faster once the MLD is deeper than the depth where the maximum salinity occurs (150-200m). This distinctive salinity layer is the result of surface Ekman transport of fresh water from the south and subsurface advection of high-salinity water from the north. Two configurations of the Community Earth System Model (CESM) ocean-ice forced hindcast experimentsone with 1 degrees and the other with 0.1 degrees horizontal resolution (Parallel Ocean Program low and high resolutions [POP-LR and POP-HR], respectively)are compared with the Argo data for 2005-2009. POP-LR has a shallow MLD bias common to many Fifth Coupled Models Intercomparison Project (CMIP5) models, while POP-HR has a mix of deep and shallow MLD biases. While both models were able to replicate the large-scale processes leading to formation of a high-salinity layer, the salinity feature in POP-HR is too strong and deep. Neither model was able to replicate the vertical mixing processes leading to penetration of the subsurface salt maximum.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2018 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author DuVivier, Alice K.
Large, William G.
Small, R. Justin
Publisher UCAR/NCAR - Library
Publication Date 2018-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:18:57.939099
Metadata Record Identifier edu.ucar.opensky::articles:22181
Metadata Language eng; USA
Suggested Citation DuVivier, Alice K., Large, William G., Small, R. Justin. (2018). Argo observations of the deep mixing band in the Southern Ocean: A salinity modeling challenge. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d72j6ftp. Accessed 11 February 2025.

Harvest Source