Assessing RRFS versus HRRR in predicting widespread convective systems over the eastern CONUS

This study provides a comparison of the operational HRRR version 4 and its eventual successor, the experimental Rapid Refresh Forecast System (RRFS) model (summer 2022 version), at predicting the evolution of convective storm characteristics during widespread convective events that occurred primarily over the eastern United States during summer 2022. In total 32 widespread convective events were selected using observations from the MRMS composite reflectivity, which includes an equal number of MCSs, quasi-linear convective systems (QLCSs), clusters, and cellular convec-tion. Each storm system was assessed on four primary characteristics: total storm area, total storm count, storm area ratio (an indicator of mean storm size), and storm size distributions. It was found that the HRRR predictions of total storm area were comparable to MRMS, while the RRFS overpredicted total storm area by 40%-60% depending on forecast lead time. Both models tended to underpredict storm counts particularly during the storm initiation and growth period. This bias in storm counts originates early in the model runs (forecast hour 1) and propagates through the simulation in both models indicating that both miss storm initiation events and/or merge individual storm objects too quickly. Thus, both models end up with mean storm sizes that are much larger than observed (RRFS more so than HRRR). Additional analyses revealed that the storm area and individual storm biases were largest for the clusters and cellular convective modes. These results can serve as a benchmark for assessing future versions of RRFS and will aid model users in interpreting forecast guidance.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2024 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Grim, Joseph A.
Pinto, James
Dowell, D. C.
Publisher UCAR/NCAR - Library
Publication Date 2024-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T20:05:37.462609
Metadata Record Identifier edu.ucar.opensky::articles:26914
Metadata Language eng; USA
Suggested Citation Grim, Joseph A., Pinto, James, Dowell, D. C.. (2024). Assessing RRFS versus HRRR in predicting widespread convective systems over the eastern CONUS. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7pr813q. Accessed 01 August 2025.

Harvest Source