Assessing the applicability of the tropical convective-stratiform paradigm in the extratropics using radar divergence profiles

Long-term radar observations from a subtropical location in southeastern Texas are used to examine the impact of storm systems with tropical or extratropical characteristics on the large-scale circulation. Climatological vertical profiles of the horizontal wind divergence are analyzed for four distinct storm classifications: cold frontal (CF), warm frontal (WF), deep convective upper-level disturbance (DC-ULD), and nondeep convective upper-level disturbances (NC-ULD). DC-ULD systems are characterized by weakly baroclinic or equivalent barotropic environments that are more tropical in nature, while the remaining classifications are representative of common midlatitude systems with varying degrees of baroclinicity. DC-ULD systems are shown to have the highest levels of nondivergence (LND) and implied diabatic heating maxima near 6 km, whereas the remaining baroclinic storm classifications have LND altitudes that are about 0.5-1 km lower. Analyses of climatological mean divergence profiles are also separated by rain regions that are primarily convective, stratiform, or indeterminate. Convective–stratiform separations reveal similar divergence characteristics to those observed in the tropics in previous studies, with higher altitudes of implied heating in stratiform rain regions, suggesting that the convective–stratiform paradigm outlined in previous studies is applicable in the midlatitudes. Divergence profiles that cannot be classified as primarily convective or stratiform are typically characterized by large regions of stratiform rain with areas of embedded convection of shallow to moderate extent (i.e., echo tops <10 km). These indeterminate profiles illustrate that, despite not being very deep and accounting for a relatively small fraction of a given storm system, convection dominates the vertical divergence profile and implied heating in these cases.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Homeyer, Cameron
Schumacher, Courtney
Hopper, Larry
Publisher UCAR/NCAR - Library
Publication Date 2014-09-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:08:17.626571
Metadata Record Identifier edu.ucar.opensky::articles:14290
Metadata Language eng; USA
Suggested Citation Homeyer, Cameron, Schumacher, Courtney, Hopper, Larry. (2014). Assessing the applicability of the tropical convective-stratiform paradigm in the extratropics using radar divergence profiles. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7nc6255. Accessed 19 March 2025.

Harvest Source