Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models

The climate impacts of the observed Atlantic multidecadal variability(AMV) are investigated using the GFDL CM2.1 and the NCAR CESM1 coupled climate models. The model North Atlantic sea surface temperatures are restored to fixed anomalies corresponding to an estimate of the internally driven component of the observed AMV. Both models show that during boreal summer the AMV alters the Walker circulation and generates precipitation anomalies over the whole tropical belt. A warm phase of the AMV yields reduced precipitation over the western United States, drier conditions over the Mediterranean basin, and wetter conditions over northern Europe. During boreal winter, the AMV modulates by a factor of about 2 the frequency of occurrence of El Nino and La Nina events. This response is associated with anomalies over the Pacific that project onto the interdecadal Pacific oscillation pattern (i.e., Pacific decadal oscillation-like anomalies in the Northern Hemisphere and a symmetrical pattern in the Southern Hemisphere). This winter response is a lagged adjustment of the Pacific Ocean to the AMV forcing in summer. Most of the simulated global-scale impacts are driven by the tropical part of the AMV, except for the winter North Atlantic Oscillation-like response over the North Atlantic-European region, which is driven by both the subpolar and tropical parts of the AMV. The teleconnections between the Pacific and Atlantic basins alter the direct North Atlantic local response to the AMV, which highlights the importance of using a global coupled framework to investigate the climate impacts of the AMV. The similarity of the two model responses gives confidence that impacts described in this paper are robust.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Software #1 : NCAR Command Language (NCL)

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Ruprich-Robert, Yohan
Msadek, Rym
Castruccio, Frederic
Yeager, Stephen
Delworth, Tom
Danabasoglu, Gokhan
Publisher UCAR/NCAR - Library
Publication Date 2017-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:14:21.503732
Metadata Record Identifier edu.ucar.opensky::articles:19771
Metadata Language eng; USA
Suggested Citation Ruprich-Robert, Yohan, Msadek, Rym, Castruccio, Frederic, Yeager, Stephen, Delworth, Tom, Danabasoglu, Gokhan. (2017). Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d77p9192. Accessed 18 March 2025.

Harvest Source