Assessment of the High-Resolution Rapid Refresh Model’s ability to predict mesoscale convective systems using object-based evaluation

An object-based verification technique that keys off the radar-retrieved vertically integrated liquid (VIL) is used to evaluate how well the High-Resolution Rapid Refresh (HRRR) predicted mesoscale convective systems (MCSs) in 2012 and 2013. It is found that the modeled radar VIL values are roughly 50% lower than observed. This mean bias is accounted for by reducing the radar VIL threshold used to identify MCSs in the HRRR. This allows for a more fair evaluation of the model’s skill at predicting MCSs. Using an optimized VIL threshold for each summer, it is found that the HRRR reproduces the first (i.e., counts) and second moments (i.e., size distribution) of the observed MCS size distribution averaged over the eastern United States, as well as their aspect ratio, orientation, and diurnal variations. Despite threshold optimization, the HRRR tended to predict too many (few) MCSs at lead times less (greater) than 4 h because of lead time–dependent biases in the modeled radar VIL. The HRRR predicted too many MCSs over the Great Plains and too few MCSs over the southeastern United States during the day. These biases are related to the model’s tendency to initiate too many MCSs over the Great Plains and too few MCSs over the southeastern United States. Additional low biases found over the Mississippi River valley region at night revealed a tendency for the HRRR to dissipate MCSs too quickly. The skill of the HRRR at predicting specific MCS events increased between 2012 and 2013, coinciding with changes in both the model physics and in the methods used to assimilate the three-dimensional radar reflectivity.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Pinto, James
Grim, Joseph
Steiner, Matthias
Publisher UCAR/NCAR - Library
Publication Date 2015-08-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:04:54.705999
Metadata Record Identifier edu.ucar.opensky::articles:16864
Metadata Language eng; USA
Suggested Citation Pinto, James, Grim, Joseph, Steiner, Matthias. (2015). Assessment of the High-Resolution Rapid Refresh Model’s ability to predict mesoscale convective systems using object-based evaluation. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7kd2043. Accessed 06 February 2025.

Harvest Source