Assessment of uncertainty sources in snow cover simulation in the Tibetan Plateau

Snow cover over the Tibetan Plateau (TP) plays an important role in Asian climate. State-of-the-art models, however, show significant simulation biases. In this study, we assess the main uncertainty associated with model physics in snow cover modeling over the TP using ground-based observations and high-resolution snow cover satellite products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and FengYun-3B (FY3B). We first conducted 10-km simulations using the Noah with multiparameterization (Noah-MP) land surface model by optimizing physics-scheme options, which reduces 8.2% absolute bias of annual snow cover fraction (SCF) compared with the default model settings. Then, five SCF parameterizations in Noah-MP were optimized and assessed, with three of them further reducing the annual SCF biases from around 15% to less than 2%. Thus, optimizing SCF parameterizations appears to be more important than optimizing physics-scheme options in reducing the uncertainty of snow modeling. As a result of improved SCF, the positive bias of simulated surface albedo decreases significantly compared to the GLASS albedo data, particularly in high-elevation regions. This substantially enhances the absorbed solar radiation and further reduces the annual mean biases of ground temperature from -3.5 to -0.8 degrees C and snow depth from 4.2 to 0.2 mm. However, the optimized model still overestimates SCF in the western TP and underestimates SCF in the eastern TP. Further analysis using a higher-resolution (4 km) simulation driven by topographically adjusted air temperature shows slight improvement, suggesting a rather limited contribution of the finer-scale land surface characteristics to SCF uncertainty.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2020 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Jiang, Yingsha
Chen, Fei
Gao, Yanhong
He, Cenlin
Barlage, Michael
Huang, Wubin
Publisher UCAR/NCAR - Library
Publication Date 2020-09-27T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:10:35.613233
Metadata Record Identifier edu.ucar.opensky::articles:23705
Metadata Language eng; USA
Suggested Citation Jiang, Yingsha, Chen, Fei, Gao, Yanhong, He, Cenlin, Barlage, Michael, Huang, Wubin. (2020). Assessment of uncertainty sources in snow cover simulation in the Tibetan Plateau. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d76m3b3t. Accessed 28 June 2025.

Harvest Source