Assessment of using field-aligned currents to drive the global ionosphere thermosphere model: A case study for the 2013 St Patrick’s Day geomagnetic storm

In this study, field-aligned currents (FACs) obtained from the Active Magnetosphere and Planetary Electrodynamics Response Experiment data set have been used to specify the high-latitude electric potential in the Global Ionosphere Thermosphere Model (GITM). The advantages and challenges of the FAC-driven simulation are investigated based on a series of numerical experiments and data-model comparisons for the 2013 St Patrick's Day geomagnetic storm. It is found that the cross-track ion drift measured by the Defense Meteorological Satellite Program satellites can be well reproduced in the FAC-driven simulation when the electron precipitation pattern obtained from Assimilative Mapping of Ionospheric Electrodynamics (AMIE) technique is used in GITM. It is also found that including the neutral wind dynamo properly is very important when using FACs to derive the high-latitude electric field. Without the neutral wind dynamo, the cross-polar-cap potential and hemispheric integrated Joule heating could be underestimated by more than 20%. Moreover, the FAC-driven simulation is able to well reproduce the ionospheric response to the geomagnetic storm in the American sector. However, the FAC-driven simulation yields relatively larger data-model discrepancies compared to the AMIE-driven GITM simulation. This may result from inaccurate Joule heating estimations in the FAC-driven simulation caused by the inconsistency between the FAC and electron precipitation patterns. This study indicates that the FAC-driven technique could be a useful tool for studying the coupled ionosphere and thermosphere system provided that the FACs and electron precipitation patterns can be accurately specified.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2022 American Geophysical Union (AGU).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zhu, Qingyu
Lu, Gang
Maute, Astrid
Deng, Yue
Anderson, Brian
Publisher UCAR/NCAR - Library
Publication Date 2022-09-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:18:33.604953
Metadata Record Identifier edu.ucar.opensky::articles:25760
Metadata Language eng; USA
Suggested Citation Zhu, Qingyu, Lu, Gang, Maute, Astrid, Deng, Yue, Anderson, Brian. (2022). Assessment of using field-aligned currents to drive the global ionosphere thermosphere model: A case study for the 2013 St Patrick’s Day geomagnetic storm. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7r2155b. Accessed 15 February 2025.

Harvest Source