Assimilating compact phase space retrievals of atmospheric composition with WRF-Chem/DART: a regional chemical transport/ensemble Kalman filter data assimilation system

This paper introduces the Weather Research and Forecasting Model with chemistry/Data Assimilation Research Testbed (WRF-Chem/DART) chemical transport forecasting/data assimilation system together with the assimilation of compact phase space retrievals of satellite-derived atmospheric composition products. WRF-Chem is a state-of-the-art chemical transport model. DART is a flexible software environment for researching ensemble data assimilation with different assimilation and forecast model options. DART's primary assimilation tool is the ensemble adjustment Kalman filter. WRF-Chem/DART is applied to the assimilation of Terra/Measurement of Pollution in the Troposphere (MOPITT) carbon monoxide (CO) trace gas retrieval profiles. Those CO observations are first assimilated as quasi-optimal retrievals (QORs). Our results show that assimilation of the CO retrievals (i) reduced WRF-Chem's CO bias in retrieval and state space, and (ii) improved the CO forecast skill by reducing the Root Mean Square Error (RMSE) and increasing the Coefficient of Determination (R2). Those CO forecast improvements were significant at the 95 % level. Trace gas retrieval data sets contain (i) large amounts of data with limited information content per observation, (ii) error covariance cross-correlations, and (iii) contributions from the retrieval prior profile that should be removed before assimilation. Those characteristics present challenges to the assimilation of retrievals. This paper addresses those challenges by introducing the assimilation of compact phase space retrievals (CPSRs). CPSRs are obtained by preprocessing retrieval data sets with an algorithm that (i) compresses the retrieval data, (ii) diagonalizes the error covariance, and (iii) removes the retrieval prior profile contribution. Most modern ensemble assimilation algorithms can efficiently assimilate CPSRs. Our results show that assimilation of MOPITT CO CPSRs reduced the number of observations (and assimilation computation costs) by  ∼  35 %, while providing CO forecast improvements comparable to or better than with the assimilation of MOPITT CO QORs.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 Authors. This work is distributed under the Creative Commons Attribution 3.0 License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Mizzi, Arthur
Arellano, Avelino
Edwards, David
Anderson, Jeffrey
Pfister, Gabriele
Publisher UCAR/NCAR - Library
Publication Date 2016-03-04T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:00:41.118728
Metadata Record Identifier edu.ucar.opensky::articles:18501
Metadata Language eng; USA
Suggested Citation Mizzi, Arthur, Arellano, Avelino, Edwards, David, Anderson, Jeffrey, Pfister, Gabriele. (2016). Assimilating compact phase space retrievals of atmospheric composition with WRF-Chem/DART: a regional chemical transport/ensemble Kalman filter data assimilation system. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7cz38sz. Accessed 15 March 2025.

Harvest Source