Assimilation of MODIS snow cover through the Data Assimilation Research Testbed and the Community Land Model version 4

To improve snowpack estimates in Community Land Model version 4 (CLM4), the Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover fraction (SCF) was assimilated into the Community Land Model version 4 (CLM4) via the Data Assimilation Research Testbed (DART). The interface between CLM4 and DART is a flexible, extensible approach to land surface data assimilation. This data assimilation system has a large ensemble (80-member) atmospheric forcing that facilitates ensemble-based land data assimilation. We use 40 randomly chosen forcing members to drive 40 CLM members as a compromise between computational cost and the data assimilation performance. The localization distance, a parameter in DART, was tuned to optimize the data assimilation performance at the global scale. Snow water equivalent (SWE) and snow depth are adjusted via the ensemble adjustment Kalman filter, particularly in regions with large SCF variability. The root-mean-square error of the forecast SCF against MODIS SCF is largely reduced. In DJF (December-January-February), the discrepancy between MODIS and CLM4 is broadly ameliorated in the lower-middle latitudes (23°–45°N). Only minimal modifications are made in the higher-middle (45°–66°N) and high latitudes, part of which is due to the agreement between model and observation when snow cover is nearly 100%. In some regions it also reveals that CLM4-modeled snow cover lacks heterogeneous features compared to MODIS. In MAM (March-April-May), adjustments to snow move poleward mainly due to the northward movement of the snowline (i.e., where largest SCF uncertainty is and SCF assimilation has the greatest impact). The effectiveness of data assimilation also varies with vegetation types, with mixed performance over forest regions and consistently good performance over grass, which can partly be explained by the linearity of the relationship between SCF and SWE in the model ensembles. The updated snow depth was compared to the Canadian Meteorological Center (CMC) data. Differences between CMC and CLM4 are generally reduced in densely monitored regions.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2014 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zhang, Yong-Fei
Hoar, Timothy
Yang, Zong-Liang
Anderson, Jeffrey
Toure, Ally
Rodell, Matthew
Publisher UCAR/NCAR - Library
Publication Date 2014-06-27T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:55:34.034661
Metadata Record Identifier edu.ucar.opensky::articles:14238
Metadata Language eng; USA
Suggested Citation Zhang, Yong-Fei, Hoar, Timothy, Yang, Zong-Liang, Anderson, Jeffrey, Toure, Ally, Rodell, Matthew. (2014). Assimilation of MODIS snow cover through the Data Assimilation Research Testbed and the Community Land Model version 4. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7c82b8s. Accessed 13 February 2025.

Harvest Source