Atmospheric conditions associated with Labrador Sea deep convection: New insights from a case study of the 2006/07 and 2007/08 winters

Deep convection in the Labrador Sea (LS) resumed in the winter of 2007/08 under a moderately positive North Atlantic Oscillation (NAO) state. This is in sharp contrast with the previous winter with weak convection, despite a similar positive NAO state. This disparity is explored here by analyzing reanalysis data and forced-ocean simulations. It is found that the difference in deep convection is primarily due to differences in large-scale atmospheric conditions that are not accounted for by the conventional NAO definition. Specifically, the 2007/08 winter was characterized by an atmospheric circulation anomaly centered in the western North Atlantic, rather than the eastern North Atlantic that the conventional NAO emphasizes. This anomalous circulation was also accompanied by anomalously cold conditions over northern North America. The controlling influence of these atmospheric conditions on LS deep convection in the 2008 winter is confirmed by sensitivity experiments where surface forcing and/or initial conditions are modified. An extended analysis for the 1949-2009 period shows that about half of the winters with strong heat losses in the LS are associated with such a west-centered circulation anomaly and cold conditions over northern North America. These are found to be accompanied by La Niña-like conditions in the tropical Pacific, suggesting that the atmospheric response to La Niña may have a strong influence on LS deep convection.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Kim, Who
Yeager, Stephen
Chang, Ping
Danabasoglu, Gokhan
Publisher UCAR/NCAR - Library
Publication Date 2016-07-15T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:02:31.406193
Metadata Record Identifier edu.ucar.opensky::articles:18604
Metadata Language eng; USA
Suggested Citation Kim, Who, Yeager, Stephen, Chang, Ping, Danabasoglu, Gokhan. (2016). Atmospheric conditions associated with Labrador Sea deep convection: New insights from a case study of the 2006/07 and 2007/08 winters. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7h996tj. Accessed 16 March 2025.

Harvest Source