Atmospheric tracers during the 2003-2004 stratospheric warming event and impact of ozone intrusions in the troposphere

We use the stratospheric/tropospheric chemical transport model MOZART-3 to study the distribution and transport of stratospheric O₃ during the remarkable stratospheric sudden warming event observed in January 2004 in the northern polar region. A comparison between observations by the MIPAS instrument on board the ENVISAT spacecraft and model simulations shows that the evolution of the polar vortex and of planetary waves during the warming event plays an important role in controlling the spatial distribution of stratospheric ozone and the downward ozone flux in the lower stratosphere and upper troposphere (UTLS) region. Compared to the situation during the winter of 2002-2003, lower ozone concentrations were transported from the polar region to mid-latitudes, leading to exceptional large areas of low ozone concentrations outside the polar vortex and "low-ozone pockets" in the middle stratosphere. The unusually long-lasting stratospheric westward winds (easterlies) during the 2003-2004 event greatly restricted the upward propagation of planetary waves, causing the weak transport of ozone-rich air originated from low latitudes to the middle polar stratosphere (30 km). The restricted wave activities led to a reduced extratropical downward ozone flux from the lower stratosphere to the lowermost stratosphere (or from the "overworld" into the "middleworld"), especially over East Asia. Consequently, during wintertime (15 December~15 February), the total downward ozone transport on 100 hPa surface by the descending branches of Brewer-Dobson circulation over this region was about 10% lower during the 2003-2004 event. Meanwhile, the extratropical total cross-tropopause ozone flux (CTOF) was also reduced by ~25%. Compared to the cold 1999-2000 winter, the vertical CTOF in high latitudes (60°~90° N) increased more than 10 times during the two warming winters, while the vertical CTOF in mid-latitudes (30°~60° N) decreased by 20~40%. Moreover, during the two warming winters, the meridional CTOF caused by the isentropic transport associating with the enhanced wave activity also increased and played an important role in the total extratropical CTOF budget.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Authors 2009. This work is distributed under the Creative Commons Attribution 3.0 License


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Liu, Y.
Liu, C.
Wang, H.
Tie, Xue
Gao, S.
Kinnison, Douglas
Brasseur, Guy
Publisher UCAR/NCAR - Library
Publication Date 2009-03-24T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:56:20.966554
Metadata Record Identifier edu.ucar.opensky::articles:15346
Metadata Language eng; USA
Suggested Citation Liu, Y., Liu, C., Wang, H., Tie, Xue, Gao, S., Kinnison, Douglas, Brasseur, Guy. (2009). Atmospheric tracers during the 2003-2004 stratospheric warming event and impact of ozone intrusions in the troposphere. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7pz59tc. Accessed 10 February 2025.

Harvest Source