Atomic hydrogen in the mesopause region derived from SABER: Algorithm theoretical basis, measurement uncertainty, and results

Atomic hydrogen (H) is a fundamental component in the photochemistry and energy balance of the terrestrial mesopause region (80-100 km). H is generated primarily by photolysis of water vapor and participates in a highly exothermic reaction with ozone. This reaction is a significant source of heat in the mesopause region and also creates highly vibrationally excited hydroxyl (OH) from which the Meinel band radiative emission features originate. Concentrations (cm-3) and volume mixing ratios of H are derived from observations of infrared emission from the OH vibration-rotation bands near 2.0 µm made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite. The algorithms for deriving day and night H are described herein. Day and night concentrations exhibit excellent agreement between 87 and 95 km. SABER H results also exhibit good agreement with observations from the Solar Mesosphere Explorer made nearly 30 years ago. An apparent inverse dependence on the solar cycle is observed in the SABER H concentrations, with the H increasing as solar activity decreases. This increase is shown to be primarily due to the temperature dependence of various reaction rate coefficients for H photochemistry. The SABER H data, coupled with SABER atomic oxygen, ozone, and temperature, enable tests of mesospheric photochemistry and energetics in atmospheric models, studies of formation of polar mesospheric clouds, and studies of atmospheric evolution via escape of hydrogen. These data and studies are made possible by the wide range of parameters measured simultaneously by the SABER instrument.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2014 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Mlynczak, Martin
Hunt, Linda
Marshall, B.
Mertens, Christopher
Marsh, Daniel
Smith, Anne
Russell, James
Siskind, David
Gordley, Larry
Publisher UCAR/NCAR - Library
Publication Date 2014-03-27T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:48:28.216223
Metadata Record Identifier edu.ucar.opensky::articles:13334
Metadata Language eng; USA
Suggested Citation Mlynczak, Martin, Hunt, Linda, Marshall, B., Mertens, Christopher, Marsh, Daniel, Smith, Anne, Russell, James, Siskind, David, Gordley, Larry. (2014). Atomic hydrogen in the mesopause region derived from SABER: Algorithm theoretical basis, measurement uncertainty, and results. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7vt1t1x. Accessed 24 April 2025.

Harvest Source