Attribution of North American subseasonal precipitation prediction skill

The skill of NOAA’s official monthly U.S. precipitation forecasts (issued in the middle of the prior month) has historically been low, having shown modest skill over the southern United States, but little or no skill over large portions of the central United States. The goal of this study is to explain the seasonal and regional variations of the North American subseasonal (weeks 3–6) precipitation skill, specifically the reasons for its successes and its limitations. The performances of multiple recent-generation model reforecasts over 1999–2015 in predicting precipitation are compared to uninitialized simulation skill using the atmospheric component of the forecast systems. This parallel analysis permits attribution of precipitation skill to two distinct sources: one due to slowly evolving ocean surface boundary states and the other to faster time-scale initial atmospheric weather states. A strong regionality and seasonality in precipitation forecast performance is shown to be analogous to skill patterns dictated by boundary forcing constraints alone. The correspondence is found to be especially high for the North American pattern of the maximum monthly skill that is achieved in the reforecast. The boundary forcing of most importance originates from tropical Pacific SST influences, especially those related to El Niño–Southern Oscillation. We discuss physical constraints that may limit monthly precipitation skill and interpret the performance of existing models in the context of plausible upper limits.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2022 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Sun, Lantao
Hoerling, Martin P.
Richter, Jadwiga H.
Hoell, Andrew
Kumar, Arun
Hurrell, James W.
Publisher UCAR/NCAR - Library
Publication Date 2022-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:40:51.429908
Metadata Record Identifier edu.ucar.opensky::articles:25869
Metadata Language eng; USA
Suggested Citation Sun, Lantao, Hoerling, Martin P., Richter, Jadwiga H., Hoell, Andrew, Kumar, Arun, Hurrell, James W.. (2022). Attribution of North American subseasonal precipitation prediction skill. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d75h7m39. Accessed 23 March 2025.

Harvest Source