Attribution of stratospheric and tropospheric ozone changes between 1850 and 2014 in CMIP6 models

We quantify the impacts of halogenated ozone-depleting substances (ODSs), greenhouse gases (GHGs), and short-lived ozone precursors on ozone changes between 1850 and 2014 using single-forcing perturbation simulations from several Earth system models with interactive chemistry participating in the Coupled Model Intercomparison Project Aerosol and Chemistry Model Intercomparison Project. We present the responses of ozone to individual forcings and an attribution of changes in ozone columns and vertically resolved stratospheric and tropospheric ozone to these forcings. We find that whilst substantial ODS-induced ozone loss dominates the stratospheric ozone changes since the 1970s, in agreement with previous studies, increases in tropospheric ozone due to increases in short-lived ozone precursors and methane since the 1950s make increasingly important contributions to total column ozone (TCO) changes. Increases in methane also lead to substantial extra-tropical stratospheric ozone increases. Impacts of nitrous oxide and carbon dioxide on stratospheric ozone are significant but their impacts on TCO are small overall due to several opposing factors and are also associated with large dynamical variability. The multi-model mean (MMM) results show a clear change in the stratospheric ozone trends after 2000 due to now declining ODSs, but the trends are generally not significantly positive, except in the extra-tropical upper stratosphere, due to relatively small changes in forcing over this period combined with large model uncertainty. Although the MMM ozone compares well with the observations, the inter-model differences are large primarily due to the large differences in the models' representation of ODS-induced ozone depletion.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2022 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zeng, Guang
Morgenstern, Olaf
Williams, Jonny H. T.
O’Connor, Fiona M.
Griffiths, Paul T.
Keeble, James
Deushi, Makoto
Horowitz, Larry W.
Naik, Vaishali
Emmons, Louisa K.
Abraham, N. Luke
Archibald, Alexander T.
Bauer, Susanne E.
Hassler, Birgit
Michou, Martine
Mills, Michael J.
Murray, Lee T.
Oshima, Naga
Sentman, Lori T.
Tilmes, Simone
Tsigaridis, Kostas
Young, Paul J.
Publisher UCAR/NCAR - Library
Publication Date 2022-08-27T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:18:15.925435
Metadata Record Identifier edu.ucar.opensky::articles:25632
Metadata Language eng; USA
Suggested Citation Zeng, Guang, Morgenstern, Olaf, Williams, Jonny H. T., O’Connor, Fiona M., Griffiths, Paul T., Keeble, James, Deushi, Makoto, Horowitz, Larry W., Naik, Vaishali, Emmons, Louisa K., Abraham, N. Luke, Archibald, Alexander T., Bauer, Susanne E., Hassler, Birgit, Michou, Martine, Mills, Michael J., Murray, Lee T., Oshima, Naga, Sentman, Lori T., Tilmes, Simone, Tsigaridis, Kostas, Young, Paul J.. (2022). Attribution of stratospheric and tropospheric ozone changes between 1850 and 2014 in CMIP6 models. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7vq36g1. Accessed 21 April 2025.

Harvest Source