Benchmark calculations of radiative forcing by greenhouse gases

Changes in concentrations of greenhouse gases lead to changes in radiative fluxes throughout the atmosphere. The value of this change, the instantaneous radiative forcing, varies across climate models, due partly to differences in the distribution of clouds, humidity, and temperature across models and partly due to errors introduced by approximate treatments of radiative transfer. This paper describes an experiment within the Radiative Forcing Model Intercomparision Project that uses benchmark calculations made with line-by-line models to identify parameterization error in the representation of absorption and emission by greenhouse gases. Clear-sky instantaneous forcing by greenhouse gases is computed using a set of 100 profiles, selected from a reanalysis of present-day conditions, that represent the global annual mean forcing from preindustrial times to the present day with sampling errors of less than 0.01 W m(-2). Six contributing line-by-line models agree in their estimate of this forcing to within 0.025 W m(-2) while even recently developed parameterizations have typical errors 4 or more times larger, suggesting both that the samples reveal true differences among line-by-line models and that parameterization error will be readily identifiable. Agreement among line-by-line models is better in the longwave than in the shortwave where differing treatments of the water vapor continuum affect estimates of forcing by carbon dioxide and methane. The impacts of clouds on instantaneous radiative forcing are estimated from climate model simulations, and the adjustment due to stratospheric temperature changes estimated by assuming fixed dynamical heating. Adjustments are large only for ozone and for carbon dioxide, for which stratospheric cooling introduces modest nonlinearity.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Software #1 : RobertPincus/rfmip-benchmark-paper-figures: Final paper figures

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Pincus, R.
Buehler, S. A.
Brath, M.
Crevoisier, C.
Jamil, O.
Franklin Evans, K.
Manners, J.
Menzel, Raymond
Mlawer, E. J.
Paynter, D.
Pernak, R. L.
Tellier, Y.
Publisher UCAR/NCAR - Library
Publication Date 2020-12-16T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T19:11:42.337494
Metadata Record Identifier edu.ucar.opensky::articles:23903
Metadata Language eng; USA
Suggested Citation Pincus, R., Buehler, S. A., Brath, M., Crevoisier, C., Jamil, O., Franklin Evans, K., Manners, J., Menzel, Raymond, Mlawer, E. J., Paynter, D., Pernak, R. L., Tellier, Y.. (2020). Benchmark calculations of radiative forcing by greenhouse gases. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7k93bv0. Accessed 19 August 2025.

Harvest Source