Broadening of cloud droplet spectra through eddy hopping: Turbulent adiabatic parcel simulations

This paper investigates spectral broadening of droplet size distributions through a mechanism referred to as the eddy hopping. The key idea, suggested a quarter century ago, is that droplets arriving at a given location within a turbulent cloud follow different trajectories and thus experience different growth histories and that this leads to a significant spectral broadening. In this study, the adiabatic parcel model with superdroplets is used to contrast droplet growth with and without turbulence. Turbulence inside the parcel is described by two parameters: (i) the dissipation rate of the turbulent kinetic energy epsilon and (ii) the linear extent of the parcel L. As expected, an adiabatic parcel without turbulence produces extremely narrow droplet spectra. In the turbulent parcel, a stochastic scheme is used to account for vertical velocity fluctuations that lead to local supersaturation fluctuations for each superdroplet. These fluctuations mimic the impact of droplets hopping turbulent eddies in a natural cloud. For L smaller than a few meters, noticeable spectral broadening is possible only for strong turbulence-say, epsilon > 100 cm(2) s(-3). For L typical for grid lengths of large-eddy simulation (LES) models (say, L between 10 and 100 m), the impact is significant even with relatively modest turbulence intensities. The impact increases with both L and epsilon. The representation of eddy hopping developed in this paper can be included in a straightforward way in the subgrid-scale scheme of a Lagrangian LES cloud model and may lead to a significant acceleration of simulated rain development through collision-coalescence.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Grabowski, Wojciech W.
Abade, Gustavo C.
Publisher UCAR/NCAR - Library
Publication Date 2017-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:14:23.855799
Metadata Record Identifier edu.ucar.opensky::articles:19782
Metadata Language eng; USA
Suggested Citation Grabowski, Wojciech W., Abade, Gustavo C.. (2017). Broadening of cloud droplet spectra through eddy hopping: Turbulent adiabatic parcel simulations. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7np2696. Accessed 15 June 2024.

Harvest Source