Calibration of machine learning-based probabilistic hail predictions for operational forecasting

In this study, we use machine learning (ML) to improve hail prediction by postprocessing numerical weather prediction (NWP) data from the new High-Resolution Ensemble Forecast system, version 2 (HREFv2). Multiple operational models and ensembles currently predict hail, however ML models are more computationally efficient and do not require the physical assumptions associated with explicit predictions. Calibrating the ML-based predictions toward familiar forecaster output allows for a combination of higher skill associated with ML models and increased forecaster trust in the output. The observational dataset used to train and verify the random forest model is the Maximum Estimated Size of Hail (MESH), a Multi-Radar Multi-Sensor (MRMS) product. To build trust in the predictions, the ML-based hail predictions are calibrated using isotonic regression. The target datasets for isotonic regression include the local storm reports and Storm Prediction Center (SPC) practically perfect data. Verification of the ML predictions indicates that the probability magnitudes output from the calibrated models closely resemble the day-1 SPC outlook and practically perfect data. The ML model calibrated toward the local storm reports exhibited better or similar skill to the uncalibrated predictions, while decreasing model bias. Increases in reliability and skill after calibration may increase forecaster trust in the automated hail predictions.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2020 American Meteorological Society.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Burke, Amanda
Snook, Nathan
Gagne II, David John
McCorkle, Sarah
McGovern, Amy
Publisher UCAR/NCAR - Library
Publication Date 2020-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:07:49.106137
Metadata Record Identifier edu.ucar.opensky::articles:23105
Metadata Language eng; USA
Suggested Citation Burke, Amanda, Snook, Nathan, Gagne II, David John, McCorkle, Sarah, McGovern, Amy. (2020). Calibration of machine learning-based probabilistic hail predictions for operational forecasting. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7ft8q79. Accessed 25 March 2025.

Harvest Source