Can data assimilation improve short-term prediction of land surface variables?

Data assimilation methods have been used to improve the performances of land surface models by integrating remote sensing and in situ measurements. However, the impact of data assimilation on improving the forecast of land surface variables has not been well studied, which is essential for weather and hydrology forecasting. In this study, a multi-pass land data assimilation scheme (MLDAS) based on the Noah-MP model was used to predict short-term land surface variables (e.g., sensible heat fluxes (H), latent heat fluxes (LE), and surface soil moisture (SM)) by jointly assimilating soil moisture, leaf area index (LAI) and solar-induced chlorophyll fluorescence (SIF). The test was conducted at the Mead site during the growing season (1 May to 30 September) in 2003, 2004, and 2005. Four assimilation-prediction scenarios (assimilating for 15 days, 45 days, 75 days, and 105 days from 1 May, then predicting one future month) are adapted to evaluate the influence of assimilation on subsequent prediction against Noah-MP open-loop simulation (OL). On average, MLDAS produces 28.65%, 27.79%, and 19.15% lower root square deviations (RMSD) for daily H, LE, and SM prediction compared to open-loop run, respectively. The influence of assimilation on prediction can reach around 60 days and 100 days for H (LE) and SM, respectively. Our findings indicate that data assimilation can improve the accuracy of land surface variables in a short-term prediction period.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Tian, Yingze
Xu, Tongren
Chen, Fei
He, Xinlei
Li, Shi
Publisher UCAR/NCAR - Library
Publication Date 2022-10-16T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:41:49.311828
Metadata Record Identifier edu.ucar.opensky::articles:25840
Metadata Language eng; USA
Suggested Citation Tian, Yingze, Xu, Tongren, Chen, Fei, He, Xinlei, Li, Shi. (2022). Can data assimilation improve short-term prediction of land surface variables?. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d78p64cc. Accessed 11 July 2025.

Harvest Source