Carbon dioxide physiological forcing dominates projected eastern Amazonian drying

Future projections of east Amazonian precipitation indicate drying, but they are uncertain and poorly understood. In this study we analyze the Amazonian precipitation response to individual atmospheric forcings using a number of global climate models. Black carbon is found to drive reduced precipitation over the Amazon due to temperature-driven circulation changes, but the magnitude is uncertain. CO2 drives reductions in precipitation concentrated in the east, mainly due to a robustly negative, but highly variable in magnitude, fast response. We find that the physiological effect of CO2 on plant stomata is the dominant driver of the fast response due to reduced latent heating and also contributes to the large model spread. Using a simple model, we show that CO2 physiological effects dominate future multimodel mean precipitation projections over the Amazon. However, in individual models temperature-driven changes can be large, but due to little agreement, they largely cancel out in the model mean.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Richardson, T. B.
Forster, P. M.
Andrews, T.
Boucher, O.
Faluvegi, G.
Fläschner, D.
Kasoar, M.
Kirkevåg, A.
Lamarque, Jean-Francois
Myhre, G.
Olivié, D.
Samset, B. H.
Shawki, D.
Shindell, D.
Takemura, T.
Voulgarakis, A.
Publisher UCAR/NCAR - Library
Publication Date 2018-03-28T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:18:22.814329
Metadata Record Identifier edu.ucar.opensky::articles:21590
Metadata Language eng; USA
Suggested Citation Richardson, T. B., Forster, P. M., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Kasoar, M., Kirkevåg, A., Lamarque, Jean-Francois, Myhre, G., Olivié, D., Samset, B. H., Shawki, D., Shindell, D., Takemura, T., Voulgarakis, A.. (2018). Carbon dioxide physiological forcing dominates projected eastern Amazonian drying. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d79s1tr1. Accessed 06 February 2025.

Harvest Source