Challenges and capabilities in estimating snow mass intercepted in conifer canopies with tree sway monitoring

Snowpack accumulation in forested watersheds depends on the amount of snow intercepted in the canopy and its partitioning into sublimation, unloading, and melt. A lack of canopy snow measurements limits our ability to evaluate models that simulate canopy processes and predict snowpack. We tested whether monitoring changes in wind-induced tree sway is a viable technique for detecting snow interception and quantifying canopy snow water equivalent (SWE). Over a 6 year period in Colorado, we monitored hourly sway of two conifers, each instrumented with an accelerometer sampling at 12 Hz. We developed an approach to distinguish changes in sway frequency due to thermal effects on tree rigidity versus intercepted snow mass. Over 60% of days with canopy snow had a sway signal that could not be distinguished from thermal effects. However, larger changes in tree sway could not generally be attributed to thermal effects, and canopy snow was present 93%-95% of the time, as confirmed with classified PhenoCam imagery. Using sway tests, we converted changes in sway to canopy SWE, which were correlated with total snowstorm amounts from a nearby SNOTEL site (Spearman r = 0.72 to 0.80, p < 0.001). Greater canopy SWE was associated with storm temperatures between -7 degrees C and 0 degrees C and wind speeds less than 4 m s(-1). Lower canopy SWE prevailed in storms with lower temperatures and higher wind speeds. Monitoring tree sway is a viable approach for quantifying canopy SWE, but challenges remain in converting changes in sway to mass and distinguishing thermal and snow mass effects on tree sway.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2022 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Raleigh, Mark S.
Gutmann, Ethan D.
Van Stan, John T.
Burns, Sean P.
Blanken, Peter D.
Small, Eric E.
Publisher UCAR/NCAR - Library
Publication Date 2022-03-09T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:18:14.926664
Metadata Record Identifier edu.ucar.opensky::articles:25608
Metadata Language eng; USA
Suggested Citation Raleigh, Mark S., Gutmann, Ethan D., Van Stan, John T., Burns, Sean P., Blanken, Peter D., Small, Eric E.. (2022). Challenges and capabilities in estimating snow mass intercepted in conifer canopies with tree sway monitoring. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7gt5rz9. Accessed 08 February 2025.

Harvest Source