Climate response using a three-dimensional operator based on the fluctuation-dissipation theorem

The fluctuation - dissipation theorem (FDT) states that for systems with certain properties it is possible to generate a linear operator that gives the response of the system to weak external forcing simply by using covariances and lag-covariances of fluctuations of the undisturbed system. This paper points out that the theorem can be shown to hold for systems with properties very close to the properties of the earth’s atmosphere. As a test of the theorem's applicability to the atmosphere, a three-dimensional operator for steady responses to external forcing is constructed for data from an atmospheric general circulation model (AGCM). The response of this operator is then compared to the response of the AGCM for various heating functions. In most cases, the FDT-based operator gives three-dimensional responses that are very similar in structure and amplitude to the corresponding GCM responses. The operator is also able to give accurate estimates for the inverse problem in which one derives the forcing that will produce a given response in the AGCM. In the few cases where the operator is not accurate, it appears that the fact that the operator was constructed in a reduced space is at least partly responsible. As an example of the potential utility of a response operator with the accuracy found here, the FDT-based operator is applied to a problem that is difficult to solve with an AGCM. It is used to generate an influence function that shows how well heating at each point on the globe excites the AGCM's Northern Hemisphere annular mode (NAM). Most of the regions highlighted by this influence function, including the Arctic and tropical Indian Ocean, are verified by AGCM solutions as being effective locations for stimulating the NAM.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Gritsun, Audrey
Branstator, Grant
Publisher UCAR/NCAR - Library
Publication Date 2007-07-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:26:59.759333
Metadata Record Identifier edu.ucar.opensky::articles:6964
Metadata Language eng; USA
Suggested Citation Gritsun, Audrey, Branstator, Grant. (2007). Climate response using a three-dimensional operator based on the fluctuation-dissipation theorem. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7ks6rtg. Accessed 15 February 2025.

Harvest Source