Climate versus emission drivers of methane lifetime against loss by tropospheric OH from 1860-2100

With a more-than-doubling in the atmospheric abundance of the potent greenhouse gas methane (CH₄) since preindustrial times, and indications of renewed growth following a leveling off in recent years, questions arise as to future trends and resulting climate and public health impacts from continued growth without mitigation. Changes in atmospheric methane lifetime are determined by factors which regulate the abundance of OH, the primary methane removal mechanism, including changes in CH₄ itself. We investigate the role of emissions of short-lived species and climate in determining the evolution of methane lifetime against loss by tropospheric OH, (TCH4_OH), in a suite of historical (1860-2005) and future Representative Concentration Pathway (RCP) simulations (2006-2100), conducted with the Geophysical Fluid Dynamics Laboratory (GFDL) fully coupled chemistry-climate model (CM3). From preindustrial to present, CM3 simulates an overall 5% increase in TCH4_OH due to a doubling of the methane burden which offsets coincident increases in nitrogen oxide (NOx emissions. Over the last two decades, however, the TCH4_OH declines steadily, coinciding with the most rapid climate warming and observed slow-down in CH₄ growth rates, reflecting a possible negative feedback through the CH₄ sink. Sensitivity simulations with CM3 suggest that the aerosol indirect effect (aerosol-cloud interactions) plays a significant role in cooling the CM3 climate. The projected decline in aerosols under all RCPs contributes to climate warming over the 21st century, which influences the future evolution of OH concentration and TCH4_OH. Projected changes in TCH4_OH from 2006 to 2100 range from -13% to +4%. The only projected increase occurs in the most extreme warming case (RCP8.5) due to the near-doubling of the CH₄ abundance, reflecting a positive feedback on the climate system. The largest decrease occurs in the RCP4.5 scenario due to changes in short-lived climate forcing agents which reinforce climate warming and enhance OH. This decrease is more-than-halved in a sensitivity simulation in which only well-mixed greenhouse gas radiative forcing changes along the RCP4.5 scenario (5% vs. 13%).

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Author(s) 2012. This work is distributed under the Creative Commons Attribution 3.0 License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author John, J.
Fiore, A.
Naik, Vaishali
Horowitz, L.
Dunne, J.
Publisher UCAR/NCAR - Library
Publication Date 2012-12-19T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:08:00.297508
Metadata Record Identifier edu.ucar.opensky::articles:12513
Metadata Language eng; USA
Suggested Citation John, J., Fiore, A., Naik, Vaishali, Horowitz, L., Dunne, J.. (2012). Climate versus emission drivers of methane lifetime against loss by tropospheric OH from 1860-2100. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7w37x4v. Accessed 23 March 2025.

Harvest Source