Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment

This paper presents results from 240-member ensemble simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment. Simulations using a two-dimensional cloud-system resolving model are run with pristine, polluted, or highly polluted aerosol conditions and large-scale forcing from a 6-day period of active monsoon conditions during the 2006 Tropical Warm Pool - International Cloud Experiment (TWP-ICE). Domain-mean surface precipitation is insensitive to aerosols primarily because the large-scale forcing is prescribed and dominates the water and static energy budgets. The spread of the top-of-atmosphere (TOA) shortwave and longwave radiative fluxes among different ensemble members for the same aerosol loading is surprisingly large, exceeding 25 W m⁻² even when averaged over the 6-day period. This variability is caused by random fluctuations in the strength and timing of individual deep convective events. The ensemble approach demonstrates a small weakening of convection averaged over the 6-day period in the polluted simulations compared to pristine. Despite this weakening, the cloud top heights and anvil ice mixing ratios are higher in polluted conditions. This occurs because of the larger concentrations of cloud droplets that freeze, leading directly to higher ice particle concentrations, smaller ice particle sizes, and smaller fall velocities compared to simulations with pristine aerosols. Weaker convection in polluted conditions is a direct result of the changes in anvil ice characteristics and subsequent upper-tropospheric radiative heating and weaker tropospheric destabilization. Such a conclusion offers a different interpretation of recent satellite observations of tropical deep convection in pristine and polluted environments compared to the hypothesis of aerosol-induced convective invigoration. Sensitivity tests using the ensemble approach with modified microphysical parameters or domain configuration (horizontal gridlength, domain size) produce results that are similar to baseline, although there are quantitative differences in estimates of aerosol impacts on TOA radiative fluxes.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Author(s) 2011. This work is distributed under the Creative Commons Attribution 3.0 License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Morrison, Hugh
Grabowski, Wojciech
Publisher UCAR/NCAR - Library
Publication Date 2011-10-24T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:50:20.782294
Metadata Record Identifier edu.ucar.opensky::articles:12277
Metadata Language eng; USA
Suggested Citation Morrison, Hugh, Grabowski, Wojciech. (2011). Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7416xsg. Accessed 29 April 2025.

Harvest Source