Comparing growth rates of simulated moist and dry convective thermals

The spreading rates of convective thermals are linked to their net entrainment, and previous literature has suggested differences in spreading rates between moist and dry thermals. In this study, growth rates of idealized numerically simulated axisymmetric dry and moist convective thermals are directly compared. In an environment with dry-neutral stratification, the increase of thermal radius with height dR/dz is a larger by a factor of 1.7 for dry thermals relative to moist thermals. The fractional change in thermal volume epsilon is also greater for dry thermals within a distance of similar to 4 radii from the initial thermal height. Values of dR/dz are nearly constant with height for both moist and dry thermals consistent with classical theory based on dimensional analysis. The simulations are also consistent with theory relating impulse, circulation, and spreading rate for dry thermals proposed in previous papers and extended here to moist thermals, predicting they will spread less than dry thermals. Tests adding heating to dry thermals, either spread uniformly across the thermal volume or concentrated in the inner core, indicate that dR/dz and epsilon are smaller for moist thermals because latent heating is confined mostly to their cores. Additional axisymmetric moist simulations using modified lapse rates and large-eddy simulations support this analysis. Overall, these results indicate that slow spreading rates are a fundamental feature of moist thermals caused by latent heating that alters the spatial distribution of buoyancy within them relative to dry thermals.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2021 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Morrison, Hugh
Peters, John M.
Sherwood, Steven C.
Publisher UCAR/NCAR - Library
Publication Date 2021-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:30:29.374207
Metadata Record Identifier edu.ucar.opensky::articles:24350
Metadata Language eng; USA
Suggested Citation Morrison, Hugh, Peters, John M., Sherwood, Steven C.. (2021). Comparing growth rates of simulated moist and dry convective thermals. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d79g5r7w. Accessed 22 May 2025.

Harvest Source