Comparison of implicit vs. explicit regime identification in machine learning methods for solar irradiance prediction

This work compares the solar power forecasting performance of tree-based methods that include implicit regime-based models to explicit regime separation methods that utilize both unsupervised and supervised machine learning techniques. Previous studies have shown an improvement utilizing a regime-based machine learning approach in a climate with diverse cloud conditions. This study compares the machine learning approaches for solar power prediction at the Shagaya Renewable Energy Park in Kuwait, which is in an arid desert climate characterized by abundant sunshine. The regime-dependent artificial neural network models undergo a comprehensive parameter and hyperparameter tuning analysis to minimize the prediction errors on a test dataset. The final results that compare the different methods are computed on an independent validation dataset. The results show that the tree-based methods, the regression model tree approach, performs better than the explicit regime-dependent approach. These results appear to be a function of the predominantly sunny conditions that limit the ability of an unsupervised technique to separate regimes for which the relationship between the predictors and the predictand would differ for the supervised learning technique.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author McCandless, Tyler
Dettling, Susan
Haupt, Sue Ellen
Publisher UCAR/NCAR - Library
Publication Date 2020-02-05T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:35:38.038815
Metadata Record Identifier edu.ucar.opensky::articles:23240
Metadata Language eng; USA
Suggested Citation McCandless, Tyler, Dettling, Susan, Haupt, Sue Ellen. (2020). Comparison of implicit vs. explicit regime identification in machine learning methods for solar irradiance prediction. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7571g7d. Accessed 28 April 2025.

Harvest Source