Comparison of methods to determine tropical tropopause layer cirrus formation mechanisms

A new method of estimating Tropical Tropopause Layer Cirrus (TTLC) formation mechanism (object method) is compared to interpretations of formation from previous studies using back trajectory calculations matched to convection identified from satellites and statistical relationships of TTLC with temperature and water vapor. The object method groups neighboring Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) TTLC cloud profiles into cloud objects and classifies them as convective (35% of TTLC) if they are directly attached to a convective cloud along the CALIPSO track. The percentage of back trajectory calculations that intersect convection (39-95% of TTLC within 5 days) depends strongly on the spatial and temporal resolution of the convection data set, and the manner in which deep convection is identified. Using minimum brightness temperature in 3 hourly, 1° resolution grid boxes to define convection, 46% of non-convective TTLC (37% of all TTLC) did not trace back to convection within 24 h. Back trajectory calculations of thin cirrus identified by the High Resolution Dynamics Limb Sounder (HIRDLS) gave similar results. Temperature is not a good proxy for formation mechanism as convective and non-convective TTLC frequencies both increase monotonically with decreasing temperature at approximately the same rate. Non-convective TTLC frequencies have a stronger relationship with relative humidity than convective TTLC frequencies, though are not sufficiently different to distinguish object method categories. A decrease in TTL cirrus frequency found at low temperatures in previous studies is caused by insufficient variability in reanalysis temperature data and is not indicative of TTLC formation mechanism.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2012 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Riihimaki, Laura
McFarlane, Sally
Liang, Calvin
Massie, Steven
Beagley, Nathaniel
Toth, Travis
Publisher UCAR/NCAR - Library
Publication Date 2012-03-30T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:48:37.264568
Metadata Record Identifier edu.ucar.opensky::articles:11793
Metadata Language eng; USA
Suggested Citation Riihimaki, Laura, McFarlane, Sally, Liang, Calvin, Massie, Steven, Beagley, Nathaniel, Toth, Travis. (2012). Comparison of methods to determine tropical tropopause layer cirrus formation mechanisms. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d75x29k3. Accessed 23 March 2025.

Harvest Source