Comparison of modeled and measured ice nucleating particle composition in a cirrus cloud

The contribution of heterogeneous ice nucleation to the formation of cirrus cloud ice crystals is still not well quantified. This results in large uncertainties when predicting cirrus radiative effects and their role in Earth's climate system. The goal of this case study is to simulate the composition, and thus activation conditions, of ice nucleating particles (INPs) to evaluate their contribution to heterogeneous cirrus ice formation in relation to homogeneous ice nucleation. For this, the regional model COSMO-Aerosols and Reactive Trace Gases (COSMO-ART) was used to simulate a synoptic cirrus cloud over Texas on 13 April 2011. The simulated INP composition was then compared to measured ice residual particle (IRP) composition from the actual event obtained during the NASA Midlatitude Airborne Cirrus Properties Experiment (MACPEX) aircraft campaign. These IRP measurements indicated that the dominance of heterogeneous ice nucleation was mainly driven by mineral dust with contributions from a variety of other particle types. Applying realistic activation thresholds and concentrations of airborne transported mineral dust and biomass-burning particles, the model implementing the heterogeneous ice nucleation parameterization scheme of Ullrich et al. is able to reproduce the overall dominating ice formation mechanism in contrast to the model simulation with the scheme of Phillips et al. However, the model showed flaws in reproducing the IRP composition.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 American Meteorological Society.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Ullrich, Romy
Hoose, Corinna
Cziczo, Daniel J.
Froyd, Karl D.
Schwarz, Joshua P.
Perring, Anne E.
Bui, Thaopaul V.
Schmitt, Carl G.
Vogel, Bernhard
Rieger, Daniel
Leisner, Thomas
Möhler, Ottmar
Publisher UCAR/NCAR - Library
Publication Date 2019-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:18:00.279777
Metadata Record Identifier edu.ucar.opensky::articles:22431
Metadata Language eng; USA
Suggested Citation Ullrich, Romy, Hoose, Corinna, Cziczo, Daniel J., Froyd, Karl D., Schwarz, Joshua P., Perring, Anne E., Bui, Thaopaul V., Schmitt, Carl G., Vogel, Bernhard, Rieger, Daniel, Leisner, Thomas, Möhler, Ottmar. (2019). Comparison of modeled and measured ice nucleating particle composition in a cirrus cloud. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7q24394. Accessed 25 April 2025.

Harvest Source