Composite physical–biological El Niño and La Niña conditions in the California Current System in CESM1-POP2-BEC

El Nino-Southern Oscillation (ENSO) is recognized as one of the potentially predictable drivers of California Current System (CCS) variability. In this study, we analyze a 67-year coarse-resolution (similar to 1 degrees) simulation using the ocean model CESM-POP2-BEC forced by NCEP/NCAR reanalysis winds to develop a model composite of the physical-biological response of the CCS during ENSO events. The model results are also compared with available observations. The composite anomalies for sea surface temperature (SST), pycnocline depth, 0m-100m vertically averaged chlorophyll, 0m-100m vertically averaged zooplankton, 25m-100m vertically averaged nitrate, and oxygen at 200m depth exhibit large-scale coherent relationships between physics and the ecosystem, including reduced nutrient and plankton concentrations during El Nino, and increased nutrient and plankton concentrations during La Nina. However, the anomalous model response in temperature, chlorophyll, and zooplankton is generally much weaker than observed and includes a 1-2 month delay compared to observations. We also highlight the asymmetry in the model CCS response, where composite model La Nina events are stronger and more significant than model El Nino events, which is a feature previously identified in observations of CCS SST as well as in tropical Pacific Nino-4 SST where atmospheric teleconnections associated with ENSO are forced. These physical-biological composites provide a view of some of the limitations to the potentially predictable impacts of ENSO teleconnections on the CCS within the modeling framework of CESM-POP2-BEC.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 Elsevier Ltd.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Cordero-Quirós, Nathalí
Miller, Arthur J.
Subramanian, Aneesh C.
Luo, Jessica Y.
Capotondi, Antonietta
Publisher UCAR/NCAR - Library
Publication Date 2019-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:08:25.724216
Metadata Record Identifier edu.ucar.opensky::articles:22853
Metadata Language eng; USA
Suggested Citation Cordero-Quirós, Nathalí, Miller, Arthur J., Subramanian, Aneesh C., Luo, Jessica Y., Capotondi, Antonietta. (2019). Composite physical–biological El Niño and La Niña conditions in the California Current System in CESM1-POP2-BEC. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d70r9sjt. Accessed 18 March 2025.

Harvest Source