Composite structure of tropopause polar cyclones

Tropopause polar vortices are coherent circulation features based on the tropopause in polar regions. They are a common feature of the Arctic, with typical radii less than 1500 km and lifetimes that may exceed 1 month. The Arctic is a particularly favorable region for these features due to isolation from the horizontal wind shear associated with the midlatitude jet stream, which may destroy the vortical circulation. Intensification of cyclonic tropopause polar vortices is examined here using an Ertel potential vorticity framework to test the hypothesis that there is an average tendency for diabatic effects to intensify the vortices due to enhanced upper-tropospheric radiative cooling within the vortices. Data for the analysis are derived from numerical simulations of a large sample of observed cyclonic vortices over the Canadian Arctic. Results show that there is on average a net tendency to create potential vorticity in the vortex, and hence intensify cyclones, and that the tendency is radiatively driven. While the effects of latent heating are considerable, they are smaller in magnitude, and all other diabatic processes have a negligible effect on vortex intensity.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Cavallo, Steven
Hakim, Gregory
Publisher UCAR/NCAR - Library
Publication Date 2010-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:26:20.408326
Metadata Record Identifier edu.ucar.opensky::articles:10867
Metadata Language eng; USA
Suggested Citation Cavallo, Steven, Hakim, Gregory. (2010). Composite structure of tropopause polar cyclones. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d75x29gr. Accessed 17 April 2025.

Harvest Source