Contrasts between urban and rural cimate in CCSM4 CMIP5 climate change scenarios

A new parameterization of urban areas in the Community Climate System Model version 4 (CCSM4) allows for simulation of temperature in cities where most of the global population lives. CCSM4 Coupled Model Intercomparison Project phase 5 (CMIP5) simulations [Representative Concentration Pathway (RCP) 2.6, 4.5, and 8.5] are analyzed to examine how urban and rural areas might respond differently to changes in climate. The urban heat island (UHI), defined as the urban minus rural air temperature, is used as a metric. The average UHI at the end of the twenty-first century is similar to present day in RCP2.6 and RCP4.5, but decreases in RCP8.5. Both the daytime and nocturnal UHIs decrease in RCP8.5, but the decrease in the daytime UHI is larger and more uniform across regions and seasons than in the nocturnal UHI. This is caused by changes in evaporation that warm the rural surface more than the urban. There is significant spatial and seasonal variability in the response of the nocturnal UHI caused mainly by changes in the rural surface. In Europe, the response to climate change of rural leaf-stem area in summer and clouds and rural soil moisture in winter explains the majority of this variability. Climate change increases the number of warm nights in urban areas substantially more than in rural areas. These results provide evidence that urban and rural areas respond differently to climate change. Thus, the unique aspects of the urban environment should be considered when making climate change projections, particularly since the global population is becoming increasingly urbanized.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Oleson, Keith
Publisher UCAR/NCAR - Library
Publication Date 2012-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:53:12.741817
Metadata Record Identifier edu.ucar.opensky::articles:11922
Metadata Language eng; USA
Suggested Citation Oleson, Keith. (2012). Contrasts between urban and rural cimate in CCSM4 CMIP5 climate change scenarios. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d70002rt. Accessed 22 March 2025.

Harvest Source