Contribution of meteorological downscaling to skill and precision of seasonal drought forecasts

Research in meteorological prediction on subseasonal to seasonal (S2S) time scales has seen growth in recent years. Concurrent with this growth, demand for seasonal drought forecasting has risen. While there is obvious synergy between these fields, S2S meteorological forecasting has typically focused on low-resolution global models, whereas the development of drought can be sensitive to the local expression of weather anomalies and their interaction with local surface properties and processes. This suggests that downscaling might play an important role in the application of meteorological S2S forecasts to skillful forecasting of drought. Here, we apply the generalized analog regression downscaling (GARD) algorithm to downscale meteorological hindcasts from the NASA Goddard Earth Observing System global S2S forecast system. Downscaled meteorological fields are then applied to drive offline simulations with the Catchment Land Surface Model to forecast U.S. Drought Monitor-style drought indicators derived from simulated surface hydrology variables. We compare the representation of drought in these downscaled hindcasts with hindcasts that are not downscaled, using the North American Land Data Assimilation System Phase 2 (NLDAS-2) dataset as an observational reference. We find that downscaling using GARD improves hindcasts of temperature and temperature anomalies but that the results for precipitation are mixed and generally small. Overall, GARD downscaling led to improved hindcast skill for total drought across the contiguous United States, and improvements were greatest for extreme (D3) and exceptional (D4) drought categories.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2021 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zamora, Ryan A.
Zaitchik, Benjamin F.
Rodell, Matthew
Getirana, Augusto
Kumar, Sujay
Arsenault, Kristi
Gutmann, Ethan
Publisher UCAR/NCAR - Library
Publication Date 2021-08-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:34:42.079102
Metadata Record Identifier edu.ucar.opensky::articles:25004
Metadata Language eng; USA
Suggested Citation Zamora, Ryan A., Zaitchik, Benjamin F., Rodell, Matthew, Getirana, Augusto, Kumar, Sujay, Arsenault, Kristi, Gutmann, Ethan. (2021). Contribution of meteorological downscaling to skill and precision of seasonal drought forecasts. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7571gjf. Accessed 12 February 2025.

Harvest Source