Contributions of atmospheric and oceanic feedbacks to subtropical northeastern sea surface temperature variability

Previous studies show that the dominant mode of variability in the Northeastern subtropical Pacific and Atlantic are analogous. Most attention has been given to the wind-evaporation-sea surface temperature (WES) feedback, but more recent studies suggest that clouds and ocean play a role. Here, it is shown that, while the mode of variability is similar, the quantitative role of clouds and ocean are different. Using Community Earth System Model, version 1.2, cloud feedbacks and interactive ocean dynamics are disabled separately to diagnose the relative contributions of each to sea surface temperature (SST) variability in subtropical northeastern ocean basins. Results from four experiments show that the relative contributions from WES and cloud radiative feedback depend on the role of the ocean. Positive cloud radiative feedback is evident in both basins but has less impact on SST variance in the Atlantic than in the Pacific. The reason for this is that ocean processes strongly damp SST anomalies in the Pacific and weakly enhance SST anomalies in the Atlantic. When cloud feedbacks are disabled, ocean processes become a larger driver of SST variability in the Atlantic. In line with previous studies, the Northeast Pacific SST variability may be understood as a white-noise-forced linear stochastic system with positive feedback from cloud and damping by latent heat flux and ocean processes, while Atlantic SST is driven partially by variations in ocean circulation and requires vertical mixing for rendition. Between these two regions, different ocean dynamics lead to different roles for atmospheric feedbacks but still result in similar patterns of SST variability.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 Author(s). This work is licensed under a Creative Commons Attribution 4.0 International license.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Middlemas, Eleanor
Clement, Amy
Medeiros, Brian
Publisher UCAR/NCAR - Library
Publication Date 2019-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:23:15.262181
Metadata Record Identifier edu.ucar.opensky::articles:22960
Metadata Language eng; USA
Suggested Citation Middlemas, Eleanor, Clement, Amy, Medeiros, Brian. (2019). Contributions of atmospheric and oceanic feedbacks to subtropical northeastern sea surface temperature variability. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7gq71xw. Accessed 15 March 2025.

Harvest Source