Convective initiation near the Andes in subtropical South America

Satellite radar and radiometer data indicate that subtropical South America has some of the deepest and most extreme convective storms on Earth. This study uses the full 15-yr TRMM Precipitation Radar dataset in conjunction with high-resolution simulations from the Weather Research and Forecasting Model to better understand the physical factors that control the climatology of high-impact weather in subtropical South America. The occurrence of intense storms with an extreme horizontal dimension is generally associated with lee cyclogenesis and a strengthening South American low-level jet (SALLJ) in the La Plata basin. The orography of the Andes is critical, and model sensitivity calculations removing and/or reducing various topographic features indicate the orographic control on the initiation of convection and its upscale growth into mesoscale convective systems (MCSs). Reduced Andes experiments show more widespread convective initiation, weaker average storm intensity, and more rapid propagation of the MCS to the east (reminiscent of the MCS life cycle downstream of lower mountains such as the Rockies). With reduced Andes, lee cyclogenesis and SALLJ winds are weaker, while they are stronger in increased Andes runs. The presence of the Sierras de Cordoba (secondary mountain range east of the Andes in Argentina) focuses convective initiation and results in more intense storms in experiments with higher Andes. Average CAPE and CIN values for each terrain modification simulation show that reduced Andes runs had lower CIN and CAPE, while increased Andes runs had both stronger CAPE and CIN. From this research, a conceptual model for convective storm environments leading to convective initiation has been developed for subtropical South America.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Rasmussen, K. L.
Houze, R. A.
Publisher UCAR/NCAR - Library
Publication Date 2016-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:10:28.020245
Metadata Record Identifier edu.ucar.opensky::articles:18873
Metadata Language eng; USA
Suggested Citation Rasmussen, K. L., Houze, R. A.. (2016). Convective initiation near the Andes in subtropical South America. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7zg6txz. Accessed 13 January 2025.

Harvest Source