Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Parameterization (CRCP)

A formal approach is presented to couple small-scale processes associated with atmospheric moist convection with the large-scale dynamics. The approach involves applying a two-dimensional cloud-resolving model in each column of a three-dimensional large-scale model. In the spirit of classical convection parameterization, which assumes scale separation between convection and the large-scale flow, the cloud-resolving models from neighboring columns interact only through the large-scale dynamics. This approach is referred to as Cloud-Resolving Convection Parameterization (CRCP). In short, CRCP involves many two-dimensional cloud-resolving models interacting in a manner consistent with the large-scale dynamics. The approach is first applied to the idealized problem of a convective-radiative equilibrium of a two-dimensional nonrotating atmosphere in the presence of SST gradients. This simple dynamical setup allows comparison of CRCP simulations with the cloud-resolving model results. In these tests, the large-scale model has various horizontal grid spacings, from 20 to 500 km, and the CRCP domains change correspondingly. Comparison between CRCP and cloud-resolving simulations shows that the large-scale features, such as the mean temperature and moisture profiles and the large-scale flow, are reasonably well represented in CRCP simulations. However, the interaction between ascending and descending branches through the gravity wave mechanism, as well as organization of convection into mesoscale convective systems, are poorly captured. These results illustrate the limitations of not only CRCP, but also convection parameterization in general. The CRCP approach is also applied to the idealized problem of a rotating constant-SST aquaplanet in convective-radiative equilibrium. The global CRCP simulation features pronounced large-scale organization of convection within the equatorial waveguide. A prominent solitary equatorial "super cloud cluster" develops toward the end of the 80-day long simulation, which bears a strong resemblance to the Madden-Julian oscillation observed in the terrestrial Tropics.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2001 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC ยง108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Grabowski, Wojciech
Publisher UCAR/NCAR - Library
Publication Date 2001-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:07:27.900212
Metadata Record Identifier edu.ucar.opensky::articles:10250
Metadata Language eng; USA
Suggested Citation Grabowski, Wojciech. (2001). Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Parameterization (CRCP). UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7vd700p. Accessed 04 February 2025.

Harvest Source