Decadal-interdecadal climate variability over Antarctica and linkages to the tropics: Analysis of ice core, instrumental, and tropical proxy data

The Antarctic continent contains the majority of the global ice volume and plays an important role in a changing climate. The nature and causes of Antarctic climate variability are, however, poorly understood beyond interannual time scales due to the paucity of long, reliable meteorological observations. This study analyzes decadal–interdecadal climate variability over Antarctica using a network of annually resolved ice core records and various instrumental and tropical proxy data for the nineteenth and twentieth centuries. During the twentieth century, Antarctic ice core records indicate strong linkages to sea surface temperature (SST) variations in the tropical Pacific and Atlantic on decadal–interdecadal time scales. Antarctic surface temperature anomalies inferred from the ice cores are consistent with the associated changes in atmospheric circulation and thermal advection. A set of atmospheric general circulation model experiments supports the idea that decadal SST variations in the tropics force atmospheric teleconnections that affect Antarctic surface temperatures. When coral and other proxies for tropical climate are used to extend the analysis back to 1799, a similar Antarctic–tropical Pacific linkage is found, although the relationship is weaker during the first half of the nineteenth century. Over the past 50 years, a change in the phase of Pacific and Atlantic interdecadal variability may have contributed to the rapid warming of the Antarctic Peninsula and West Antarctica and related changes in ice sheet dynamics.

To Access Resource:

Questions? Email Resource Support Contact:

    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email
Metadata Contact Organization UCAR/NCAR - Library

Author Okumura, Yuko
Schneider, David
Deser, Clara
Wilson, Rob
Publisher UCAR/NCAR - Library
Publication Date 2012-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:50:39.266284
Metadata Record Identifier edu.ucar.opensky::articles:12325
Metadata Language eng; USA
Suggested Citation Okumura, Yuko, Schneider, David, Deser, Clara, Wilson, Rob. (2012). Decadal-interdecadal climate variability over Antarctica and linkages to the tropics: Analysis of ice core, instrumental, and tropical proxy data. UCAR/NCAR - Library. Accessed 23 September 2023.

Harvest Source