Deep-learning-based precipitation observation quality control

We present a novel approach for the automated quality control (QC) of precipitation for a sparse station observation network within the complex terrain of British Columbia, Canada. Our QC approach uses convolutional neural networks (CNNs) to classify bad observation values, incorporating a multiclassifier ensemble to achieve better QC performance. We train CNNs using human QC'd labels from 2016 to 2017 with gridded precipitation and elevation analyses as inputs. Based on the classification evaluation metrics, our QC approach shows reliable and robust performance across different geographical environments (e.g., coastal and inland mountains), with 0.927 area under curve (AUC) and type I/type II error lower than 15%. Based on the saliency-map-based interpretation studies, we explain the success of CNN-based QC by showing that it can capture the precipitation patterns around, and upstream of the station locations. This automated QC approach is an option for eliminating bad observations for various applications, including the preprocessing of training datasets for machine learning. It can be used in conjunction with human QC to improve upon what could be accomplished with either method alone.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Sha, Yingkai
Gagne, David John
West, Gregory
Stull, Roland
Publisher UCAR/NCAR - Library
Publication Date 2021-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:30:22.998264
Metadata Record Identifier edu.ucar.opensky::articles:24497
Metadata Language eng; USA
Suggested Citation Sha, Yingkai, Gagne, David John, West, Gregory, Stull, Roland. (2021). Deep-learning-based precipitation observation quality control. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7g44tqq. Accessed 25 April 2025.

Harvest Source