Deep learning for spatially explicit prediction of synoptic-scale fronts

This paper describes the use of convolutional neural nets (CNN), a type of deep learning, to identify fronts in gridded data, followed by a novel postprocessing method that converts probability grids to objects. Synoptic-scale fronts are often associated with extreme weather in the midlatitudes. Predictors are 1000-mb (1 mb = 1 hPa) grids of wind velocity, temperature, specific humidity, wet-bulb potential temperature, and/or geopotential height from the North American Regional Reanalysis. Labels are human-drawn fronts from Weather Prediction Center bulletins. We present two experiments to optimize parameters of the CNN and object conversion. To evaluate our system, we compare the objects (predicted warm and cold fronts) with human-analyzed warm and cold fronts, matching fronts of the same type within a 100- or 250-km neighborhood distance. At 250 km our system obtains a probability of detection of 0.73, success ratio of 0.65 (or false-alarm rate of 0.35), and critical success index of 0.52. These values drastically outperform the baseline, which is a traditional method from numerical frontal analysis. Our system is not intended to replace human meteorologists, but to provide an objective method that can be applied consistently and easily to a large number of cases. Our system could be used, for example, to create climatologies and quantify the spread in forecast frontal properties across members of a numerical weather prediction ensemble.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Lagerquist, Ryan
McGovern, Amy
Gagne II, David John
Publisher UCAR/NCAR - Library
Publication Date 2019-08-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:08:03.877079
Metadata Record Identifier edu.ucar.opensky::articles:22751
Metadata Language eng; USA
Suggested Citation Lagerquist, Ryan, McGovern, Amy, Gagne II, David John. (2019). Deep learning for spatially explicit prediction of synoptic-scale fronts. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d74x5bwc. Accessed 02 December 2024.

Harvest Source