DeepMIP: Model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data

We present results from an ensemble of eight climate models, each of which has carried out simulations of the early Eocene climate optimum (EECO, similar to 50 million years ago). These simulations have been carried out in the framework of the Deep-Time Model Intercomparison Project (DeepMIP; http://www.deepmip.org , last access: 10 January 2021); thus, all models have been configured with the same paleogeographic and vegetation boundary conditions. The results indicate that these non-CO2 boundary conditions contribute between 3 and 5 degrees C to Eocene warmth. Compared with results from previous studies, the DeepMIP simulations generally show a reduced spread of the global mean surface temperature response across the ensemble for a given atmospheric CO2 concentration as well as an increased climate sensitivity on average. An energy balance analysis of the model ensemble indicates that global mean warming in the Eocene compared with the preindustrial period mostly arises from decreases in emissivity due to the elevated CO2 concentration (and associated water vapour and long-wave cloud feedbacks), whereas the reduction in the Eocene in terms of the meridional temperature gradient is primarily due to emissivity and albedo changes owing to the non-CO2 boundary conditions (i.e. the removal of the Antarctic ice sheet and changes in vegetation). Three of the models (the Community Earth System Model, CESM; the Geophysical Fluid Dynamics Laboratory, GFDL, model; and the Norwegian Earth System Model, NorESM) show results that are consistent with the proxies in terms of the global mean temperature, meridional SST gradient, and CO2, without prescribing changes to model parameters. In addition, many of the models agree well with the first-order spatial patterns in the SST proxies. However, at a more regional scale, the models lack skill. In particular, the modelled anomalies are substantially lower than those indicated by the proxies in the southwest Pacific; here, modelled continental surface air temperature anomalies are more consistent with surface air temperature proxies, implying a possible inconsistency between marine and terrestrial temperatures in either the proxies or models in this region. Our aim is that the documentation of the large-scale features and model-data comparison presented herein will pave the way to further studies that explore aspects of the model simulations in more detail, for example the ocean circulation, hydrological cycle, and modes of variability, and encourage sensitivity studies to aspects such as paleogeography, orbital configuration, and aerosols.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Lunt, Daniel J.
Bragg, Fran
Chan, Wing-Le
Hutchinson, David K.
Ladant, Jean-Baptiste
Morozova, Polina
Niezgodzki, Igor
Steinig, Sebastian
Zhang, Zhongshi
Zhu, Jiang
Abe-Ouchi, Ayako
Anagnostou, Eleni
de Boer, Agatha M.
Coxall, Helen K.
Donnadieu, Yannick
Foster, Gavin
Inglis, Gordon N.
Knorr, Gregor
Langebroek, Petra M.
Lear, Caroline H.
Lohmann, Gerrit
Poulsen, Christopher J.
Sepulchre, Pierre
Tierney, Jessica E.
Valdes, Paul J.
Volodin, Evgeny M.
Dunkley Jones, Tom
Hollis, Christopher J.
Huber, Matthew
Otto-Bliesner, Bette L.
Publisher UCAR/NCAR - Library
Publication Date 2021-01-15T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:07:26.081669
Metadata Record Identifier edu.ucar.opensky::articles:24144
Metadata Language eng; USA
Suggested Citation Lunt, Daniel J., Bragg, Fran, Chan, Wing-Le, Hutchinson, David K., Ladant, Jean-Baptiste, Morozova, Polina, Niezgodzki, Igor, Steinig, Sebastian, Zhang, Zhongshi, Zhu, Jiang, Abe-Ouchi, Ayako, Anagnostou, Eleni, de Boer, Agatha M., Coxall, Helen K., Donnadieu, Yannick, Foster, Gavin, Inglis, Gordon N., Knorr, Gregor, Langebroek, Petra M., Lear, Caroline H., Lohmann, Gerrit, Poulsen, Christopher J., Sepulchre, Pierre, Tierney, Jessica E., Valdes, Paul J., Volodin, Evgeny M., Dunkley Jones, Tom, Hollis, Christopher J., Huber, Matthew, Otto-Bliesner, Bette L.. (2021). DeepMIP: Model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7q243m5. Accessed 23 May 2025.

Harvest Source