Determining stationary periods across multiple sensors: An application to observed canopy turbulence response to atmospheric stability

A recently proposed multisensor stationarity analysis technique (MSATv1) is improved to eliminate the initial interrogation of time-averaged wind directions, a redundant and potentially biasing procedure for a technique capable of detecting changes in mean wind directions. The new technique, MSATv2, satisfies two basic expectations that are not guaranteed in MSATv1: 1) a nonstationary event should not belong to any stationary interval identified with a given stringency, and 2) nonstationary events identified with an arbitrary stringency should continue to be identified as nonstationary with increasing stringency. These expectations are confirmed by applying MSATv2 to two long periods, during the defoliated phase of the Canopy Horizontal Array Turbulence Study (CHATS), whose durations are determined solely by data availability. MSATv2 successfully determines visually trivial and nontrivial nonstationary transitions, uncovering details of the time evolution of dynamic processes. MSATv2 yields ensemble-average estimates of mean wind speeds and directions with well-controlled and quantifiable uncertainties for atmospheric stability conditions ranging from near neutral to free convection. These results enable interrogation of the observed canopy turbulence response to atmospheric stability in isolation from contamination by spatial variation with position relative to canopy elements. MSATv2 results also reveal the connection between the presence of organized convective structures and variability in mean shear, showing the role of organized convective structures in the observed relationship between the bulk drag coefficient and atmospheric instability.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : ISFF High Rate Tower Data. Version 1.0

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2020 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Pan, Ying
Patton, Edward G.
Publisher UCAR/NCAR - Library
Publication Date 2020-04-14T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:31:58.623791
Metadata Record Identifier edu.ucar.opensky::articles:23578
Metadata Language eng; USA
Suggested Citation Pan, Ying, Patton, Edward G.. (2020). Determining stationary periods across multiple sensors: An application to observed canopy turbulence response to atmospheric stability. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d75m68z1. Accessed 15 September 2024.

Harvest Source