Differences in tropical rainfall in aquaplanet simulations with resolved or parameterized deep convection

This study investigates the effects of resolved deep convection on tropical rainfall and its multi-scale variability. A series of aquaplanet simulations are analyzed using the Model for Prediction Across Scales-Atmosphere with horizontal cell spacings from 120 to 3 km. The 3-km experiment uses a novel configuration with 3-km cell spacing between 20 degrees S and 20 degrees N and 15-km cell spacing poleward of 30 degrees N/S. A comparison of those experiments shows that resolved deep convection yields a narrower, stronger, and more equatorward intertropical convergence zone, which is supported by stronger nonlinear horizontal momentum advection in the boundary layer. There is also twice as much tropical rainfall variance in the experiment with resolved deep convection than in the experiments with parameterized convection. All experiments show comparable precipitation variance associated with Kelvin waves; however, the experiment with resolved deep convection shows higher precipitation variance associated with westward propagating systems. Resolved deep convection also yields at least two orders of magnitude more frequent heavy rainfall rates (>2 mm hr(-1)) than the experiments with parameterized convection. A comparison of organized precipitation systems demonstrates that tropical convection organizes into linear systems that are associated with stronger and deeper cold pools and upgradient convective momentum fluxes when convection is resolved. In contrast, parameterized convection results in more circular systems, weaker cold pools, and downgradient convective momentum fluxes. These results suggest that simulations with parameterized convection are missing an important feedback loop between the mean state, convective organization, and meridional gradients of moisture and momentum.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Rios�Berrios, Rosimar
Bryan, George H.
Medeiros, Brian
Judt, Falko
Wang, Wei
Publisher UCAR/NCAR - Library
Publication Date 2022-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:37:38.688569
Metadata Record Identifier edu.ucar.opensky::articles:25427
Metadata Language eng; USA
Suggested Citation Rios�Berrios, Rosimar, Bryan, George H., Medeiros, Brian, Judt, Falko, Wang, Wei. (2022). Differences in tropical rainfall in aquaplanet simulations with resolved or parameterized deep convection. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d74171s3. Accessed 15 February 2025.

Harvest Source