DigitalCrust -- a 4D data system of material properties for transforming research on crustal fluid flow

Fluid circulation in the Earth's crust plays an essential role in surface, near surface, and deep crustal processes. Flow pathways are driven by hydraulic gradients but controlled by material permeability, which varies over many orders of magnitude and changes over time. Although millions of measurements of crustal properties have been made, including geophysical imaging and borehole tests, this vast amount of data and information has not been integrated into a comprehensive knowledge system. A community data infrastructure is needed to improve data access, enable large-scale synthetic analyses, and support representations of the subsurface in Earth system models. Here, we describe the motivation, vision, challenges, and an action plan for a community-governed, four-dimensional data system of the Earth's crustal structure, composition, and material properties from the surface down to the brittle--ductile transition. Such a system must not only be sufficiently flexible to support inquiries in many different domains of Earth science, but it must also be focused on characterizing the physical crustal properties of permeability and porosity, which have not yet been synthesized at a large scale. The DigitalCrust is envisioned as an interactive virtual exploration laboratory where models can be calibrated with empirical data and alternative hypotheses can be tested at a range of spatial scales. It must also support a community process for compiling and harmonizing models into regional syntheses of crustal properties. Sustained peer review from multiple disciplines will allow constant refinement in the ability of the system to inform science questions and societal challenges and to function as a dynamic library of our knowledge of Earth's crust.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2015 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Fan, Y.
Richard, S.
Bristol, R.
Peters, S.
Ingebritsen, S.
Moosdorf, N.
Packman, A.
Gleeson, T.
Zaslavsky, I.
Peckham, S.
Murdoch, L.
Fienen, M.
Cardiff, M.
Tarboton, D.
Jones, N.
Hooper, R.
Arrigo, J.
Gochis, David
Olson, J.
Wolock, D.
Publisher UCAR/NCAR - Library
Publication Date 2015-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:58:05.336174
Metadata Record Identifier edu.ucar.opensky::articles:16478
Metadata Language eng; USA
Suggested Citation Fan, Y., Richard, S., Bristol, R., Peters, S., Ingebritsen, S., Moosdorf, N., Packman, A., Gleeson, T., Zaslavsky, I., Peckham, S., Murdoch, L., Fienen, M., Cardiff, M., Tarboton, D., Jones, N., Hooper, R., Arrigo, J., Gochis, David, Olson, J., Wolock, D.. (2015). DigitalCrust -- a 4D data system of material properties for transforming research on crustal fluid flow. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7fn17cx. Accessed 22 May 2025.

Harvest Source