Direct estimates of biomass burning NOx emissions and lifetimes using daily observations from TROPOMI

Biomass burning emits an estimated 25 % of global annual nitrogen oxides (NOx), an important constituent that participates in the oxidative chemistry of the atmosphere. Estimates of NOx emission factors, representing the amount of NOx per mass burned, are primarily based on field or laboratory case studies, but the sporadic and transient nature of wildfires makes it challenging to verify whether these case studies represent the behavior of the global fires that occur on earth. Satellite remote sensing provides a unique view of the earth, allowing for the study of emissions and downwind evolution of NOx from a large number of fires. We describe direct estimates of NOx emissions and lifetimes for fires using an exponentially modified Gaussian analysis of daily TROPOspheric Monitoring Instrument (TROPOMI) retrievals of NO2 tropospheric columns. We update the a priori profile of NO2 with a fine-resolution (0.25∘) global model simulation from NASA's GEOS Composition Forecasting System (GEOS-CF), which largely enhances NO2 columns over fire plumes. We derive representative NOx emission factors for six fuel types globally by linking TROPOMI-derived NOx emissions with observations of fire radiative power from Moderate Resolution Imaging Spectroradiometer (MODIS). Satellite-derived NOx emission factors are largely consistent with those derived from in situ measurements. We observe decreasing NOx lifetime with fire emissions, which we infer is due to the increase in both NOx abundance and hydroxyl radical production. Our findings suggest promise for applying space-based observations to track the emissions and chemical evolution of reactive nitrogen from wildfires.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Jin, Xiaomeng
Zhu, Qindan
Cohen, Ronald C.
Publisher UCAR/NCAR - Library
Publication Date 2021-10-18T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:15:30.060916
Metadata Record Identifier edu.ucar.opensky::articles:24762
Metadata Language eng; USA
Suggested Citation Jin, Xiaomeng, Zhu, Qindan, Cohen, Ronald C.. (2021). Direct estimates of biomass burning NOx emissions and lifetimes using daily observations from TROPOMI. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7dn48hz. Accessed 21 April 2025.

Harvest Source