Discharge and floods projected to increase more than precipitation extremes

Floods claim a high toll in fatalities and economic impacts. Despite their societal relevance, there is much more to learn about the projected changes in discharge and flooding. Here we force an operational hydrologic model over the state of Iowa with high-resolution convection-permitting climate-model precipitation to evaluate the response of 140 watersheds to climate change. At the end of the century, under the most aggressive scenario in terms of fossil fuel use, we show that the transition from snow to rainfall and approximately 30% increase in extreme precipitation rates lead to a doubling of maximum discharge during the spring and extending the flood season into the fall. Total discharge volumes are also expected to increase. Our results suggest that flood projections based on extreme precipitation increases alone substantially underestimate future risk due to the non-linearity of the hydrologic response explained by long-term soil moisture memory and its feedbacks with precipitation. This study is one of the first to show floods are increasing due to the prevalence of rain-on-snow events, and indeed that discharge might increase more than precipitation.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Quintero, Felipe
Villarini, Gabriele
Prein, Andreas F.
Zhang, Wei
Krajewski, Witold F.
Publisher UCAR/NCAR - Library
Publication Date 2022-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:41:51.757134
Metadata Record Identifier edu.ucar.opensky::articles:25843
Metadata Language eng; USA
Suggested Citation Quintero, Felipe, Villarini, Gabriele, Prein, Andreas F., Zhang, Wei, Krajewski, Witold F.. (2022). Discharge and floods projected to increase more than precipitation extremes. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7wd44dw. Accessed 17 March 2025.

Harvest Source