Distributions of ice supersaturation and ice crystals from airborne observations in relation to upper tropospheric dynamical boundaries

Ice supersaturation (ISS) is the prerequisite condition for cirrus cloud formation. To examine multiscale dynamics' influences on ISS formation, we analyze in situ aircraft observations (~200 m scale) over North America in coordinates relative to dynamical boundaries in the upper troposphere and lower stratosphere. Two case studies demonstrate that ISS formation is likely influenced by mesoscale uplifting, small-scale waves, and turbulence. A collective analysis of 15 flights in April–June 2008 shows that the top layers of ISS and ice crystal distributions are strongly associated with thermal tropopause height. In addition, the average occurrence frequencies of ISS and ice crystals on the anticyclonic side of the jet stream are ~1.5-2 times of those on the cyclonic side. By defining five cirrus evolution phases based on the spatial relationships between ice-supersaturated and in-cloud regions, we find that their peak occurrence frequencies are located at decreasing altitudes with respect to the thermal tropopause: (phase 1) clear-sky ISS around the tropopause, (phase 2) nucleation phase around 2 km below the tropopause, (phases 3 and 4) early and later growth phases around 6 km below the tropopause, and (phase 5) sedimentation/sublimation around 2-6 km below the tropopause. Consistent with this result, chemical tracer correlation analysis shows that the majority (~80%) of the earlier cirrus phases (clear-sky ISS and nucleation) occurs inside the chemical tropopause transition layer, while the later phases happen mostly below that layer. These results shed light on the role of dynamical environment in facilitating cirrus cloud formation and evolution.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2015 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Diao, Minghui
Jensen, Jorgen
Pan, Laura
Homeyer, Cameron
Honomichl, Shawn
Bresch, James
Bansemer, Aaron
Publisher UCAR/NCAR - Library
Publication Date 2015-05-27T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:59:48.910494
Metadata Record Identifier edu.ucar.opensky::articles:16745
Metadata Language eng; USA
Suggested Citation Diao, Minghui, Jensen, Jorgen, Pan, Laura, Homeyer, Cameron, Honomichl, Shawn, Bresch, James, Bansemer, Aaron. (2015). Distributions of ice supersaturation and ice crystals from airborne observations in relation to upper tropospheric dynamical boundaries. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7z89dm1. Accessed 19 April 2024.

Harvest Source