Drivers of precipitation change: An energetic understanding

The response of the hydrological cycle to climate forcings can be understood within the atmospheric energy budget framework. In this study precipitation and energy budget responses to five forcing agents are analyzed using 10 climate models from the Precipitation Driver Response Model Intercomparison Project (PDRMIP). Precipitation changes are split into a forcing-dependent fast response and a temperature-driven hydrological sensitivity. Globally, when normalized by top-of-atmosphere (TOA) forcing, fast precipitation changes are most sensitive to strongly absorbing drivers (CO2, black carbon). However, over land fast precipitation changes are most sensitive to weakly absorbing drivers (sulfate, solar) and are linked to rapid circulation changes. Despite this, land-mean fast responses to CO2 and black carbon exhibit more intermodel spread. Globally, the hydrological sensitivity is consistent across forcings, mainly associated with increased longwave cooling, which is highly correlated with intermodel spread. The land-mean hydrological sensitivity is weaker, consistent with limited moisture availability. The PDRMIP results are used to construct a simple model for land-mean and sea-mean precipitation change based on sea surface temperature change and TOA forcing. The model matches well with CMIP5 ensemble mean historical and future projections, and is used to understand the contributions of different drivers. During the twentieth century, temperature-driven intensification of land-mean precipitation has been masked by fast precipitation responses to anthropogenic sulfate and volcanic forcing, consistent with the small observed trend. However, as projected sulfate forcing decreases, and warming continues, land-mean precipitation is expected to increase more rapidly, and may become clearly observable by the mid-twenty-first century.

To Access Resource:

Questions? Email Resource Support Contact:

    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2018 American Meteorological Society. This work is licensed under a Creative Commons Attribution 4.0 International license.

Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email
Metadata Contact Organization UCAR/NCAR - Library

Author Richardson, T. B.
Forster, P. M.
Andrews, T.
Boucher, O.
Faluvegi, G.
Fläschner, D.
Hodnebrog, Ø.
Kasoar, M.
Kirkevåg, A.
Lamarque, Jean-Francois
Myhre, G.
Olivié, D.
Samset, B. H.
Shawki, D.
Shindell, D.
Takemura, T.
Voulgarakis, A.
Publisher UCAR/NCAR - Library
Publication Date 2018-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:19:54.533000
Metadata Record Identifier edu.ucar.opensky::articles:22123
Metadata Language eng; USA
Suggested Citation Richardson, T. B., Forster, P. M., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Hodnebrog, Ø., Kasoar, M., Kirkevåg, A., Lamarque, Jean-Francois, Myhre, G., Olivié, D., Samset, B. H., Shawki, D., Shindell, D., Takemura, T., Voulgarakis, A.. (2018). Drivers of precipitation change: An energetic understanding. UCAR/NCAR - Library. Accessed 29 September 2023.

Harvest Source